On the measure of M-rough approximation of L-fuzzy sets

被引:1
|
作者
Sang-Eon Han
Alexander Šostak
机构
[1] Chonbuk National University,Department of Mathematics Education, Institute of Pure and Applied Mathematics
[2] University of Latvia,Institute of Mathematics and CS
[3] University of Latvia,Faculty of Physics and Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
-fuzzy set; Upper ; -rough approximation operator; Lower ; -rough approximation operator; Measure of inclusion; Measure of ; -rough approximation of an ; -fuzzy set; Ditopology; -ditopology;
D O I
暂无
中图分类号
学科分类号
摘要
We develop an approach allowing to measure the “quality” of rough approximation of fuzzy sets. It is based on what we call “an approximative quadruple” Q=(L,M,φ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=(L,M,\varphi ,\psi )$$\end{document} where L and M are complete lattice commutative monoids and φ:L→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : L \rightarrow M$$\end{document}, ψ:M→L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi : M \rightarrow L$$\end{document} are mappings satisfying certain conditions. By realization of this scheme, we get measures of upper and lower rough approximation for L-fuzzy subsets of a set equipped with an M-preoder R:X×X→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R: X\times X \rightarrow M$$\end{document}. In case R is symmetric, these measures coincide. Basic properties of such measures are studied. Besides, we present an interpretation of measures of rough approximation in terms of LM-fuzzy topologies.
引用
收藏
页码:3843 / 3855
页数:12
相关论文
共 50 条
  • [11] Intuitionistic L-fuzzy Rough Sets, Intuitionistic L-fuzzy Preorders and Intuitionistic L-fuzzy Topologies
    Zhong, Yu
    Yan, Cong-Hua
    FUZZY INFORMATION AND ENGINEERING, 2016, 8 (03) : 255 - 279
  • [12] Approximation Operators, Binary Relation and Basis Algebra in L-fuzzy Rough Sets
    Wu, Zhengjiang
    Qin, Keyun
    Li, Tianrui
    Ruan, Da
    FUNDAMENTA INFORMATICAE, 2011, 111 (01) : 47 - 63
  • [13] Note on 'Intuitionistic L-fuzzy Rough Sets, Intuitionistic L-fuzzy Preorders and Intuitionistic L-fuzzy Topologies'
    Tiwari, S. P.
    Singh, Anand P.
    Pandey, Saumya
    FUZZY INFORMATION AND ENGINEERING, 2021, 13 (02) : 196 - 198
  • [14] Representations of L-fuzzy rough approximation operators
    Sun, Yan
    Shi, Fu-Gui
    INFORMATION SCIENCES, 2023, 645
  • [15] The Basis Algebra in L-Fuzzy Rough Sets
    Wu, Zhengjiang
    Yang, Lingxiao
    Li, Tianrui
    Qin, Keyun
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2009, 5589 : 320 - +
  • [16] Rough L-fuzzy sets: Their representation and related structures
    Gegeny, David
    Radeleczki, Sandor
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 142 : 1 - 12
  • [17] Construction of Basis Algebra in L-fuzzy Rough Sets
    Wu, Zhengjiang
    THIRD INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY (ISCSCT 2010), 2010, : 498 - 501
  • [18] L-fuzzy rough approximation operators via three new types of L-fuzzy relations
    Pang, Bin
    Mi, Ju-Sheng
    Yao, Wei
    SOFT COMPUTING, 2019, 23 (22) : 11433 - 11446
  • [19] L-fuzzy rough approximation operators via three new types of L-fuzzy relations
    Bin Pang
    Ju-Sheng Mi
    Wei Yao
    Soft Computing, 2019, 23 : 11433 - 11446
  • [20] Rough uniformity of topological rough groups and L-fuzzy approximation groups
    Ahsanullah, T. M. G.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (01) : 1129 - 1139