Data assimilation for the heat equation using stabilized finite element methods

被引:0
|
作者
Erik Burman
Lauri Oksanen
机构
[1] University College London,Department of Mathematics
来源
Numerische Mathematik | 2018年 / 139卷
关键词
65M12; 65M15; 65M30; 65M32;
D O I
暂无
中图分类号
学科分类号
摘要
We consider data assimilation for the heat equation using a finite element space semi-discretization. The approach is optimization based, but the design of regularization operators and parameters rely on techniques from the theory of stabilized finite elements. The space semi-discretized system is shown to admit a unique solution. Combining sharp estimates of the numerical stability of the discrete scheme and conditional stability estimates of the ill-posed continuous pde-model we then derive error estimates that reflect the approximation order of the finite element space and the stability of the continuous model. Two different data assimilation situations with different stability properties are considered to illustrate the framework. Full detail on how to adapt known stability estimates for the continuous model to work with the numerical analysis framework is given in “Appendix”.
引用
收藏
页码:505 / 528
页数:23
相关论文
共 50 条
  • [41] Assimilation of Dynamic Combined Finite Discrete Element Methods Using the Ensemble Kalman Filter
    Godinez, Humberto C.
    Rougier, Esteban
    APPLIED SCIENCES-BASEL, 2021, 11 (07):
  • [42] MIXED AND STABILIZED FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM
    Gustafsson, Tom
    Stenberg, Rolf
    Videman, Juha
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 2718 - 2744
  • [43] A variational Germano approach for stabilized finite element methods
    Akkerman, I.
    van der Zee, K. G.
    Hulshoff, S. J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (9-12) : 502 - 513
  • [44] Stabilized finite element methods for the generalized Oseen problem
    Braack, M.
    Burman, E.
    John, V.
    Lube, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) : 853 - 866
  • [45] Stabilized Finite Element Methods for the Oberbeck–Boussinesq Model
    Helene Dallmann
    Daniel Arndt
    Journal of Scientific Computing, 2016, 69 : 244 - 273
  • [46] CONSISTENT LOCAL PROJECTION STABILIZED FINITE ELEMENT METHODS
    Barrenechea, Gabriel R.
    Valentin, Frederic
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) : 1801 - 1825
  • [47] Variational data assimilation with finite-element discretization for second-order parabolic interface equation
    Li, Xuejian
    He, Xiaoming
    Gong, Wei
    Douglas, Craig C.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 451 - 493
  • [48] Mixed finite element methods for the Rosenau equation
    Atouani, Noureddine
    Ouali, Yousra
    Omrani, Khaled
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) : 393 - 420
  • [49] FINITE ELEMENT METHODS FOR THE TRANSPORT EQUATION.
    Lesaint, P.
    Revue Francaise d'Automatique Informatique Recherche Operationnelle, 1974, 8 : 67 - 93
  • [50] Finite element methods for the parabolic equation with interfaces
    Dougalis, VA
    Kampanis, NA
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 1996, 4 (01) : 55 - 88