Data assimilation for the heat equation using stabilized finite element methods

被引:0
|
作者
Erik Burman
Lauri Oksanen
机构
[1] University College London,Department of Mathematics
来源
Numerische Mathematik | 2018年 / 139卷
关键词
65M12; 65M15; 65M30; 65M32;
D O I
暂无
中图分类号
学科分类号
摘要
We consider data assimilation for the heat equation using a finite element space semi-discretization. The approach is optimization based, but the design of regularization operators and parameters rely on techniques from the theory of stabilized finite elements. The space semi-discretized system is shown to admit a unique solution. Combining sharp estimates of the numerical stability of the discrete scheme and conditional stability estimates of the ill-posed continuous pde-model we then derive error estimates that reflect the approximation order of the finite element space and the stability of the continuous model. Two different data assimilation situations with different stability properties are considered to illustrate the framework. Full detail on how to adapt known stability estimates for the continuous model to work with the numerical analysis framework is given in “Appendix”.
引用
收藏
页码:505 / 528
页数:23
相关论文
共 50 条
  • [1] Data assimilation for the heat equation using stabilized finite element methods
    Burman, Erik
    Oksanen, Lauri
    NUMERISCHE MATHEMATIK, 2018, 139 (03) : 505 - 528
  • [2] STABILIZED NONCONFORMING FINITE ELEMENT METHODS FOR DATA ASSIMILATION IN INCOMPRESSIBLE FLOWS
    Burman, Erik
    Hansbo, Peter
    MATHEMATICS OF COMPUTATION, 2018, 87 (311) : 1029 - 1050
  • [3] FULLY DISCRETE FINITE ELEMENT DATA ASSIMILATION METHOD FOR THE HEAT EQUATION
    Burman, Erik
    Ish-Horowicz, Jonathan
    Oksanen, Lauri
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (05): : 2065 - 2082
  • [4] Unique continuation for the Helmholtz equation using stabilized finite element methods
    Burman, Erik
    Nechita, Mihai
    Oksanen, Lauri
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 129 : 1 - 22
  • [5] A FINITE ELEMENT DATA ASSIMILATION METHOD FOR THE WAVE EQUATION
    Burman, Erik
    Feizmohammadi, Ali
    Oksanen, Lauri
    MATHEMATICS OF COMPUTATION, 2020, 89 (324) : 1681 - 1709
  • [6] Stabilized Finite Element Methods for the Schrodinger Wave Equation
    Kannan, Raguraman
    Masud, Arif
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2009, 76 (02): : 1 - 7
  • [7] Stabilized finite element methods and feedback control for Burgers' equation
    Atwell, JA
    King, BB
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 2745 - 2749
  • [8] Optimal control of the convection-diffusion equation using stabilized finite element methods
    Becker, Roland
    Vexler, Boris
    NUMERISCHE MATHEMATIK, 2007, 106 (03) : 349 - 367
  • [9] Optimal control of the convection-diffusion equation using stabilized finite element methods
    Roland Becker
    Boris Vexler
    Numerische Mathematik, 2007, 106 : 349 - 367
  • [10] Bayesian Inference for Data Assimilation using Least-Squares Finite Element Methods
    Dwight, Richard P.
    9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS, 2010, 10