A note on comparison principle for p-laplacian evolution type equation

被引:0
|
作者
P. L. Guidolin
L. Schütz
J. S. Ziebell
机构
[1] Universidade Federal do Rio Grande do Sul,Departamento de Matemática Pura e Aplicada
来源
Journal of Elliptic and Parabolic Equations | 2021年 / 7卷
关键词
Laplacian evolution equation; Comparison principles; Initial value problems for parabolic equations; p-Laplacian; 35B51; 35K30; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we provide a comparison principle for the weak solutions u(·,t),v(·,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(\cdot ,t),v(\cdot ,t)$$\end{document} of two similar evolution p-Laplacian equations, both with source terms in a divergent and non-divergent form. Once we treat with signal solutions defined in all space Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}, for all t in a maximal existence interval [0,T∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,T_*)$$\end{document}, the arguments presented here differ from the ones used to prove the comparison principle in bounded domains. We suppose p≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge n$$\end{document}, p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document} and also consider some additional natural assumptions. The initial conditions u(·,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(\cdot ,0)$$\end{document} and v(·,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(\cdot ,0)$$\end{document} are supposed to belong to the space L1(Rn)∩L∞(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}(\mathbb {R}^{n}) \cap L^{\infty }(\mathbb {R}^{n})$$\end{document}. An useful proposition to prove the comparison principle will be presented and the contraction of the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} norm of u-v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u-v$$\end{document} for a particular case will be shown.
引用
收藏
页码:65 / 73
页数:8
相关论文
共 50 条
  • [21] On the Existence of Regular Global Attractor for p-Laplacian Evolution Equation
    Geredeli, Pelin G.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2015, 71 (03): : 517 - 532
  • [22] Anisotropic p-Laplacian Evolution of Fast Diffusion Type
    Feo, Filomena
    Luis Vazquez, Juan
    Volzone, Bruno
    ADVANCED NONLINEAR STUDIES, 2021, 21 (03) : 523 - 555
  • [23] The fractional p-Laplacian evolution equation in RN in the sublinear case
    Vazquez, Juan Luis
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (04)
  • [24] Critical exponents for the evolution p-Laplacian equation with a localized reaction
    Liang, Zhilei
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2012, 43 (05): : 535 - 558
  • [25] A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
    Andreu, F.
    Mazon, J. M.
    Rossi, J. D.
    Toledo, J.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (02): : 201 - 227
  • [26] HARNACK TYPE INEQUALITIES FOR THE PARABOLIC LOGARITHMIC P-LAPLACIAN EQUATION
    Fornaro, Simona
    Henriques, Eurica
    Vespri, Vincenzo
    MATEMATICHE, 2020, 75 (01): : 277 - 311
  • [27] Decay estimates for the wave equation of p-Laplacian type with dissipation of m-Laplacian type
    Benaissa, Abbes
    Mokeddem, Soufiane
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (02) : 237 - 247
  • [28] Higher integrability for a quasilinear parabolic equation of p-Laplacian type
    Yao, Fengping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) : 1265 - 1274
  • [29] Symmetry of solutions for a fractional p-Laplacian equation of Choquard type
    Phuong Le
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (04)
  • [30] Lyapunov-type inequalities for a fractional p-Laplacian equation
    Nassir Al Arifi
    Ishak Altun
    Mohamed Jleli
    Aref Lashin
    Bessem Samet
    Journal of Inequalities and Applications, 2016