The global Golub-Kahan method and Gauss quadrature for tensor function approximation

被引:0
|
作者
A. H. Bentbib
M. El Ghomari
K. Jbilou
L. Reichel
机构
[1] Faculté des Sciences et Techniques-Gueliz,Department of Mathematics, École Normale Supérieure
[2] Laboratoire de Mathématiques Appliquées et Informatique,Department of Mathematical Sciences
[3] Mohammed V University in Rabat,undefined
[4] Université du Littoral,undefined
[5] University UM6P,undefined
[6] Kent State University,undefined
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Generalized tensor function; Tensor t-product; Tensor nuclear norm; Golub-Kahan bidiagonalization; Gauss quadrature;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with Krylov subspace methods based on the tensor t-product for  computing certain quantities associated with generalized third-order tensor functions. We use the tensor t-product and define the tensor global Golub-Kahan bidiagonalization process for approximating tensor functions. Pairs of Gauss and Gauss-Radau quadrature rules are applied to determine the desired quantities with error bounds. An application to the computation of the tensor nuclear norm is presented and illustrates the effectiveness of the proposed methods.
引用
收藏
页码:5 / 34
页数:29
相关论文
共 29 条
  • [21] Projector Augmented Wave Method with Gauss-Type Atomic Orbital Basis: Implementation of the Generalized Gradient Approximation and Mesh Grid Quadrature
    Xiong, Xiao-Gen
    Sugiura, Akira
    Yanai, Takeshi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (08) : 4883 - 4898
  • [22] ORTHOGONAL LOW RANK TENSOR APPROXIMATION: ALTERNATING LEAST SQUARES METHOD AND ITS GLOBAL CONVERGENCE
    Wang, Liqi
    Chu, Moody T.
    Yu, Bo
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (01) : 1 - 19
  • [23] Derivation of optimum polar angle quadrature set for the method of characteristics based on approximation error for the Bickley function
    Yamamoto, Akio
    Tabuchi, Masato
    Sugimura, Naoki
    Ushio, Tadashi
    Mori, Masaaki
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2007, 44 (02) : 129 - 136
  • [24] A matrix-free isogeometric Galerkin method for Karhunen-Loeve approximation of random fields using tensor product splines, tensor contraction and interpolation based quadrature
    Mika, Michal L.
    Hughes, Thomas J. R.
    Schillinger, Dominik
    Wriggers, Peter
    Hiemstra, Rene R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 379
  • [25] Solution of partial differential equations by a global radial basis function-based differential quadrature method
    Shu, C
    Ding, H
    Yeo, KS
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (10) : 1217 - 1226
  • [26] Cutting-plane method with function approximation for global optimization of heat exchanger networks
    Hu, Xiang-Bai
    Cui, Guo-Min
    Tu, Wei-Min
    Ni, Jin
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (06): : 995 - 997
  • [27] Hyperbolic B-Spline Function-Based Differential Quadrature Method for the Approximation of 3D Wave Equations
    Tamsir, Mohammad
    Meetei, Mutum Zico
    Msmali, Ahmed H.
    AXIOMS, 2022, 11 (11)
  • [28] A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction
    Zheng, Jun
    Shao, Xinyu
    Gao, Liang
    Jiang, Ping
    Li, Zilong
    JOURNAL OF ENGINEERING DESIGN, 2013, 24 (08) : 604 - 622
  • [29] Novel approximation of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document}-function using Gauss quadrature rule
    Ashish Goel
    Jyoti Gupta
    Sādhanā, 48 (4)