New Subinterval Selection Criteria for Interval Global Optimization

被引:0
|
作者
Tibor Csendes
机构
[1] University of Szeged,Institute of Informatics
来源
关键词
Convergence properties; Interval methods; Global optimization; Interval selection;
D O I
暂无
中图分类号
学科分类号
摘要
The theoretical convergence properties of interval global optimization algorithms that select the next subinterval to be subdivided according to a new class of interval selection criteria are investigated. The latter are based on variants of the RejectIndex: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$pf^* (X) = \frac{{f^* - \underline F (X)}}{{\overline F (X) - \underline F (X)}}$$ \end{document}, a recently thoroughly studied indicator, that can quite reliably show which subinterval is close to a global minimizer point. Extensive numerical tests on 40 problems confirm that substantial improvements can be achieved both on simple and sophisticated algorithms by the new method (utilizing the known minimum value), and that these improvements are larger when hard problems are to be solved.
引用
收藏
页码:307 / 327
页数:20
相关论文
共 50 条
  • [41] Interval algorithm for global numerical optimization
    Zhang, Xiaowei
    Liu, Sanyang
    ENGINEERING OPTIMIZATION, 2008, 40 (09) : 849 - 868
  • [42] Heuristic rejection in interval global optimization
    Casado, LG
    García, I
    Csendes, T
    Ruíz, VG
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (01) : 27 - 43
  • [43] Global optimization using interval arithmetic
    Jerrell, Max E.
    Computational Economics, 1994, 7 (01)
  • [44] The extrapolated interval global optimization algorithm
    P. S. V. Nataraj
    Shanta Sondur
    Journal of Global Optimization, 2011, 50 : 249 - 270
  • [45] AN INTERVAL ALGORITHM FOR NONDIFFERENTIABLE GLOBAL OPTIMIZATION
    SHENG, ZL
    WOLFE, MA
    APPLIED MATHEMATICS AND COMPUTATION, 1994, 63 (2-3) : 101 - 122
  • [46] Modified Interval and Subinterval Perturbation Methods for the Static Response Analysis of Structures with Interval Parameters
    Xia, Baizhan
    Yu, Dejie
    JOURNAL OF STRUCTURAL ENGINEERING, 2014, 140 (05)
  • [47] New criteria for the semiconvergence of interval matrices
    Arndt, HR
    Mayer, G
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (03) : 689 - 711
  • [48] A new interval contractor based on optimality conditions for bound constrained global optimization
    Granvilliers, Laurent
    2018 IEEE 30TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2018, : 90 - 97
  • [49] Subinterval decomposition-based interval importance analysis method
    Wang W.
    Wang X.
    CMES - Computer Modeling in Engineering and Sciences, 2020, 124 (02): : 985 - 1000
  • [50] Application of Multi-Criteria Optimization for Selection of Building Materials for New Buildings
    Halirova, Marcela
    Rykalova, Eva
    Perina, Zdenek
    Wolfova, Marie
    ENVIBUILD 2014, 2014, 1041 : 47 - 50