MHD Falkner-Skan flow of Maxwell fluid by rational Chebyshev collocation method

被引:0
|
作者
S. Abbasbandy
T. Hayat
H. R. Ghehsareh
A. Alsaedi
机构
[1] Imam Khomeini International University,Department of Mathematics
[2] Quaid-i-Azam University,Department of Mathematics
[3] King Abdulaziz University,Department of Mathematics, Faculty of Science
来源
Applied Mathematics and Mechanics | 2013年 / 34卷
关键词
Falkner-Skan equation; Runge-Kutta method; skin friction coefficient; rational Chebyshev polynomial; collocation method; magnetohydrodynamics (MHD) Maxwell fluid; O327; 34B16; 34B40; 76D10;
D O I
暂无
中图分类号
学科分类号
摘要
The magnetohydrodynamics (MHD) Falkner-Skan flow of the Maxwell fluid is studied. Suitable transform reduces the partial differential equation into a nonlinear three order boundary value problem over a semi-infinite interval. An efficient approach based on the rational Chebyshev collocation method is performed to find the solution to the proposed boundary value problem. The rational Chebyshev collocation method is equipped with the orthogonal rational Chebyshev function which solves the problem on the semi-infinite domain without truncating it to a finite domain. The obtained results are presented through the illustrative graphs and tables which demonstrate the affectivity, stability, and convergence of the rational Chebyshev collocation method. To check the accuracy of the obtained results, a numerical method is applied for solving the problem. The variations of various embedded parameters into the problem are examined.
引用
收藏
页码:921 / 930
页数:9
相关论文
共 50 条
  • [31] An iterative method for solving the Falkner-Skan equation
    Zhang, Jiawei
    Chen, Binghe
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (01) : 215 - 222
  • [32] Solution of the Falkner-Skan wedge flow by HPM-Pade' method
    Bararnia, H.
    Ghasemi, E.
    Soleimani, Soheil
    Ghotbi, Abdoul R.
    Ganji, D. D.
    ADVANCES IN ENGINEERING SOFTWARE, 2012, 43 (01) : 44 - 52
  • [33] Application of the differential transformation method to the solutions of Falkner-Skan wedge flow
    B.-L. Kuo
    Acta Mechanica, 2003, 164 : 161 - 174
  • [34] Application of the differential transformation method to the solutions of Falkner-Skan wedge flow
    Kuo, BL
    ACTA MECHANICA, 2003, 164 (3-4) : 161 - 174
  • [35] Solution of the Falkner-Skan Equation Using the Chebyshev Series in Matrix Form
    Elnady, Abdelrady Okasha
    Abd Rabbo, M. Fayek
    Negm, Hani M.
    JOURNAL OF ENGINEERING, 2020, 2020
  • [36] Numerical solution of a generalized Falkner-Skan flow of a FENE-P fluid
    Khuri, S. A.
    Sayfy, A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (06) : 1098 - 1111
  • [37] Nonlinear radiative magnetohydrodynamic Falkner-Skan flow of Casson fluid over a wedge
    Raju, C. S. K.
    Sandeep, N.
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (03) : 2045 - 2054
  • [38] ON LARGE PRANDTL NUMBER CONVECTION IN FALKNER-SKAN FLOW
    KORPELA, SA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (02): : 121 - 123
  • [39] Correlating convection heat transfer for Falkner-Skan flow
    Zhang, Liang
    Fan, Liwu
    Yu, Zitao
    Mei, Renwei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 131 : 101 - 108
  • [40] Finite element simulation of bioconvection Falkner-Skan flow of a Maxwell nanofluid fluid along with activation energy over a wedge
    Ali, Bagh
    Hussain, Sajjad
    Nie, Yufeng
    Khan, Shahid Ali
    Naqvi, Syed Irfan Raza
    PHYSICA SCRIPTA, 2020, 95 (09)