A recurrent construction of irreducible polynomials of fixed degree over finite fields

被引:0
|
作者
Gohar M. Kyureghyan
Melsik K. Kyureghyan
机构
[1] University of Rostock,
[2] Institute for Informatics and Automation Problems,undefined
关键词
Finite fields; Composition method; Irreducible polynomials; Order of polynomial; Minimal polynomial; Square root;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider in detail the composition of an irreducible polynomial with X2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^2$$\end{document} and suggest a recurrent construction of irreducible polynomials of fixed degree over finite fields of odd characteristics. More precisely, given an irreducible polynomial of degree n and order 2rt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^rt$$\end{document} with t odd, the construction produces ordt(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ord_t(2)$$\end{document} irreducible polynomials of degree n and order t. The construction can be used for example to search irreducible polynomials with specific requirements on its coefficients.
引用
收藏
页码:163 / 171
页数:8
相关论文
共 50 条
  • [41] Self-reciprocal irreducible polynomials over finite fields
    Yucas, JL
    Mullen, GL
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 33 (03) : 275 - 281
  • [42] Irreducible polynomials over finite fields produced by composition of quadratics
    Heath-Brown, David Rodney
    Micheli, Giacomo
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (03) : 847 - 855
  • [43] Number of irreducible polynomials in several variables over finite fields
    Bodin, Arnaud
    AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (07): : 653 - 660
  • [44] Efficient Indexing of Necklaces and Irreducible Polynomials over Finite Fields
    Kopparty, Swastik
    Kumar, Mrinal
    Saks, Michael
    THEORY OF COMPUTING, 2016, 12
  • [45] Self-Reciprocal Irreducible Polynomials Over Finite Fields
    Joseph L. Yucas
    Gary L. Mullen
    Designs, Codes and Cryptography, 2004, 33 : 275 - 281
  • [46] Constructions of irreducible polynomials over finite fields with even characteristic
    Sharma, P. L.
    Ashima
    Gupta, Shalini
    Harish, Mansi
    Kumar, Sushil
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 734 - 742
  • [47] Efficient Indexing of Necklaces and Irreducible Polynomials over Finite Fields
    Kopparty, Swastik
    Kumar, Mrinal
    Saks, Michael
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT I, 2014, 8572 : 726 - 737
  • [48] A construction of primitive polynomials over finite fields
    Cardell, Sara D.
    Climent, Joan-Josep
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (12): : 2424 - 2431
  • [49] Construction of primitive polynomials over finite fields
    Alizadeh, Mahmood
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)
  • [50] Enumerating permutation polynomials over finite fields by degree
    Konyagin, S
    Pappalardi, F
    FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (04) : 548 - 553