Comparisons between multiplicative and additive Schwarz iterations in domain decomposition methods

被引:0
|
作者
Reinhard Nabben
机构
[1] Universität Bielefeld,Fakultät für Mathematik
来源
Numerische Mathematik | 2003年 / 95卷
关键词
Linear System; Decomposition Method; Coarse Grid; Domain Decomposition; Fast Method;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the multiplicative and additive Schwarz methods for solving linear systems of equations and we compare their asymptotic rate of convergence. Moreover, we compare the multiplicative Schwarz method with the weighted restricted additive Schwarz method. We prove that the multiplicative Schwarz method is the fastest method among these three. Our comparisons can be done in the case of exact and inexact subspaces solves. In addition, we analyse two ways of adding a coarse grid correction – multiplicatively or additively.
引用
收藏
页码:145 / 162
页数:17
相关论文
共 50 条
  • [41] Schwarz domain decomposition preconditioners for plane wave discontinuous Galerkin methods
    Antonietti, Paola F.
    Perugia, Ilaria
    Davide, Zaliani
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 557 - 572
  • [42] On Schwarz's domain decomposition methods for elliptic boundary value problems
    Lai, MJ
    Wenston, P
    NUMERISCHE MATHEMATIK, 2000, 84 (03) : 475 - 495
  • [43] Aitken-Schwarz and Schur complement methods for time domain decomposition
    Linel, Patrice
    Tromeur-Dervout, Damien
    PARALLEL COMPUTING: FROM MULTICORES AND GPU'S TO PETASCALE, 2010, 19 : 75 - 82
  • [44] Convergence theory of restricted multiplicative Schwarz methods
    Nabben, R
    Szyld, DB
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 40 (06) : 2318 - 2336
  • [45] Matrix analysis to additive Schwarz methods
    Sun, JC
    Chan, TF
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1995, 13 (04) : 325 - 336
  • [46] MATRIX ANALYSIS TO ADDITIVE SCHWARZ METHODS
    J.C. Sun(Computing Center
    JournalofComputationalMathematics, 1995, (04) : 325 - 336
  • [47] Additive Schwarz methods for parabolic problems
    Yang, JH
    Yang, DP
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (01) : 17 - 28
  • [48] ADDITIVE SCHWARZ METHODS FOR SERENDIPITY ELEMENTS
    Marchena-Menendez, Jorge
    Kirby, Robert C.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : S401 - S420
  • [49] Schwarz methods by domain truncation
    Gander, Martin J.
    Zhang, Hui
    ACTA NUMERICA, 2022, 31 : 1 - 134
  • [50] Schwarz methods by domain truncation
    Gander, Martin J.
    Zhang, Hui
    arXiv, 2022,