360° video quality assessment based on saliency-guided viewport extraction

被引:0
|
作者
Fanxi Yang
Chao Yang
Ping An
Xinpeng Huang
机构
[1] Shanghai University,School of Communication and Information Engineering
来源
Multimedia Systems | 2024年 / 30卷
关键词
Video quality assessment; video; Viewport selection; Saliency prediction;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the distortion of projection generated during the production of 360∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$360^{\circ }$$\end{document} video, most quality assessment algorithms used for 2D video have the problem of performance degradation. In this paper, we propose a full-reference 360∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$360^{\circ }$$\end{document} video quality assessment method, utilizing saliency to guide viewport extraction to eliminate the projection distortion. To be more specific, we first predict the visual saliency of each frame with a 360∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$360^{\circ }$$\end{document} saliency prediction network and then select the viewport that optimally represents the video frame through the optimal viewport positioning module (OVPM). Furthermore, we propose the attention-based three-dimensional convolutional neural network (3D CNN) quality assessment network to evaluate the video quality, in which 3D CNN convolution and attention modules can better capture the quality degradation of distorted viewports. Experimental results show that our method achieves superior performance in 360∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$360^{\circ }$$\end{document} video quality assessment tasks.
引用
收藏
相关论文
共 50 条
  • [31] Saliency-guided convolution neural network-transformer fusion network for no-reference image quality assessment
    Wu, Lipeng
    Cui, Ziguan
    Gan, Zongliang
    Tang, Guijin
    Liu, Feng
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [32] Advancing User Quality of Experience Using Viewport Archives in Viewport-Aware Tile-Based 360-Degree Video Streaming
    Dziubinski, Kiana
    Bandai, Masaki
    2021 IEEE INTERNATIONAL WORKSHOP TECHNICAL COMMITTEE ON COMMUNICATIONS QUALITY AND RELIABILITY (CQR 2021), 2021,
  • [33] Energy-Efficient Saliency-Guided Video Coding Framework for Real-Time Applications
    Partanen, Tero
    Hoang, Minh
    Mercat, Alexandre
    Sainio, Joose
    Vanne, Jarno
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2025, 15 (01) : 44 - 57
  • [34] Unsupervised Video Object Segmentation Using Motion Saliency-Guided Spatio-Temporal Propagation
    Hu, Yuan-Ting
    Huang, Jia-Bin
    Schwing, Alexander G.
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 813 - 830
  • [35] MOTION TRAJECTORY BASED VISUAL SALIENCY FOR VIDEO QUALITY ASSESSMENT
    Ma, Lin
    Li, Songnan
    Ngan, King N.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 233 - 236
  • [36] SALI360: Design and Implementation of Saliency based Video Compression for 360° Video Streaming
    Baek, Duin
    Kang, Hangil
    Ryoo, Jihoon
    MMSYS'20: PROCEEDINGS OF THE 2020 MULTIMEDIA SYSTEMS CONFERENCE, 2020, : 141 - 152
  • [37] No Reference Quality Assessment of Stereo Video Based on Saliency and Sparsity
    Yang, Jiachen
    Ji, Chunqi
    Jiang, Bin
    Lu, Wen
    Meng, Qinggang
    IEEE TRANSACTIONS ON BROADCASTING, 2018, 64 (02) : 341 - 353
  • [38] 3D No-Reference Image Quality Assessment via Transfer Learning and Saliency-Guided Feature Consolidation
    Xu, Xiaogang
    Shi, Bufan
    Gu, Zijin
    Deng, Ruizhe
    Chen, Xiaodong
    Krylov, Andrey S.
    Ding, Yong
    IEEE ACCESS, 2019, 7 : 85286 - 85297
  • [39] UAV Image Haze Removal Based on Saliency-Guided Parallel Learning Mechanism
    Zheng, Ruohui
    Zhang, Libao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [40] Cluster-Based Saliency-Guided Content-Aware Image Retargeting
    Li-Wei Kang
    Ching-Yu Tseng
    Chao-Long Jheng
    Ming-Fang Weng
    Chao-Yung Hsu
    JournalofElectronicScienceandTechnology, 2017, 15 (02) : 141 - 146