Deformed super-Halley’s iteration in Banach spaces and its local and semilocal convergence

被引:0
|
作者
M. Prashanth
Abhimanyu Kumar
D. K. Gupta
S. S. Mosta
机构
[1] Amrita Vishwa Vidyapeetham,Department of Mathematics, Amrita School of Engineering
[2] Uma Pandey College,Department of Mathematics
[3] Lalit Narayan Mithila University,Department of Mathematics
[4] Indian Institute of Technology Kharagpur,undefined
[5] University of Swaziland,undefined
来源
Afrika Matematika | 2019年 / 30卷
关键词
Super-Halley’s method; Derivative of Fréchet; Majorizing function; Recurrence relations; 15A09; 65F05; 65F35;
D O I
暂无
中图分类号
学科分类号
摘要
Deformed super-Halley’s iteration for nonlinear equations is studied in Banach spaces with its local and semilocal convergence. The local convergence is established under Hölder continuous first Fréchet derivative. A theorem for the existence and uniqueness of solution is provided and the radii of convergence balls are obtained. For semilocal convergence, the second order Fréchet derivative is Hölder continuous. The Hölder continuous first Fréchet derivative is not used as it leads to lower R-order of convergence. Recurrence relations depending on two parameters are obtained. A theorem for the existence and uniqueness along with the estimation of bounds on errors is also established. The R-order convergence comes out to be (2+p),p∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+p), p \in (0,1]$$\end{document}. Nonlinear integral equations and a variety of numerical examples are solved to demonstrate our work.
引用
收藏
页码:413 / 431
页数:18
相关论文
共 50 条
  • [21] Local convergence of Super Halley’s method under weaker conditions on Fréchet derivative in Banach spaces
    Abhimanyu Kumar
    D. K. Gupta
    The Journal of Analysis, 2020, 28 : 35 - 44
  • [22] Semilocal Convergence Analysis of S-iteration Process of Newton-Kantorovich Like in Banach Spaces
    Sahu, Daya Ram
    Yao, Jen Chih
    Singh, Vipin Kumar
    Kumar, Satyendra
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 172 (01) : 102 - 127
  • [23] Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces
    Sukhjit Singh
    D. K. Gupta
    E. Martínez
    José L. Hueso
    Mediterranean Journal of Mathematics, 2016, 13 : 4219 - 4235
  • [24] Extending the convergence domain of deformed Halley method under ω condition in Banach spaces
    Sharma, Debasis
    Parhi, Sanjaya Kumar
    Sunanda, Shanta Kumari
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (02):
  • [25] Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces
    Singh, Sukhjit
    Gupta, D. K.
    Martinez, E.
    Hueso, Jose L.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4219 - 4235
  • [26] General Local Convergence Theorems about the Picard Iteration in Arbitrary Normed Fields with Applications to Super-Halley Method for Multiple Polynomial Zeros
    Ivanov, Stoil I.
    MATHEMATICS, 2020, 8 (09)
  • [27] Improved local convergence analysis of the Landweber iteration in Banach spaces
    Mittal, Gaurav
    Giri, Ankik Kumar
    ARCHIV DER MATHEMATIK, 2023, 120 (02) : 195 - 202
  • [28] Semilocal convergence of a continuation method in Banach spaces
    Prashanth M.
    Motsa S.
    Numerical Analysis and Applications, 2017, 10 (01) : 47 - 62
  • [29] Improved local convergence analysis of the Landweber iteration in Banach spaces
    Gaurav Mittal
    Ankik Kumar Giri
    Archiv der Mathematik, 2023, 120 : 195 - 202
  • [30] On the semilocal convergence behavior for Halley's method
    Ling, Yonghui
    Xu, Xiubin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (03) : 597 - 618