Gravitation and Electromagnetism as Geometrical Objects of a Riemann-Cartan Spacetime Structure

被引:0
|
作者
J. Fernando T. Giglio
Waldyr A. Rodrigues
机构
[1] FEA-CEUNSP,Institute of Mathematics, Statistics and Scientific Computation
[2] IMECC-UNICAMP,undefined
来源
关键词
83C22; 83Exx; 70S99; Riemann-Cartan connection; electromagnetism; gravitation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we first show that any coupled system consisting of a gravitational plus a free electromagnetic field can be described geometrically in the sense that both Maxwell equations and Einstein equation having as source term the energy-momentum of the electromagnetic field can be derived from a geometrical Lagrangian proportional to the scalar curvature R of a particular kind of Riemann-Cartan spacetime structure. In our model the gravitational and electromagnetic fields are identified as geometrical objects of the structure.We show moreover that the contorsion tensor of the particular Riemann-Cartan spacetime structure of our theory encodes the same information as the one contained in Chern-Simons term \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf A} \wedge {\it d}{\bf A}}$$\end{document} that is proportional to the spin density of the electromagnetic field. Next we show that by adding to the geometrical Lagrangian a term describing the interaction of a electromagnetic current with a general electromagnetic field plus the gravitational field, together with a term describing the matter carrier of the current we get Maxwell equations with source term and Einstein equation having as source term the sum of the energy-momentum tensors of the electromagnetic and matter terms. Finally modeling by dust charged matter the carrier of the electromagnetic current we get the Lorentz force equation. Moreover, we prove that our theory is gauge invariant. We also briefly discuss our reasons for the present enterprise.
引用
收藏
页码:649 / 664
页数:15
相关论文
共 50 条
  • [1] Gravitation and Electromagnetism as Geometrical Objects of a Riemann-Cartan Spacetime Structure
    Giglio, J. Fernando T.
    Rodrigues, Waldyr A., Jr.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (03) : 649 - 664
  • [2] Zero-size objects in Riemann-Cartan spacetime
    Vasilic, Milovan
    Vojinovic, Marko
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (08):
  • [3] Spinning branes in Riemann-Cartan spacetime
    Vasilic, Milovan
    Vojinovic, Marko
    PHYSICAL REVIEW D, 2008, 78 (10):
  • [4] GEOMETRIC OPTICS IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 98 (8-9) : 411 - 413
  • [5] Tidal heating in a Riemann-Cartan spacetime
    Hensh, Sudipta
    Liberati, Stefano
    Vitagliano, Vincenzo
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [6] Deviation equation in Riemann-Cartan spacetime
    Puetzfeld, Dirk
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [7] An almost-Poisson structure for autoparallels on Riemann-Cartan spacetime
    Guo, YX
    Song, YB
    Zhang, XB
    Chi, DP
    CHINESE PHYSICS LETTERS, 2003, 20 (08) : 1192 - 1195
  • [8] PROPERTIES OF A SPIN FLUID IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    PLATANIA, G
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 95 (08) : 425 - 428
  • [9] SEMICLASSICAL PARTICLES WITH ARBITRARY SPIN IN THE RIEMANN-CARTAN SPACETIME
    NOMURA, K
    SHIRAFUJI, T
    HAYASHI, K
    PROGRESS OF THEORETICAL PHYSICS, 1992, 87 (05): : 1275 - 1291
  • [10] QUASI-MAXWELLIAN FIELDS IN RIEMANN-CARTAN SPACETIME
    DEANDRADE, LCG
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1989, 28 (01) : 79 - 81