An almost-Poisson structure for autoparallels on Riemann-Cartan spacetime

被引:7
|
作者
Guo, YX [1 ]
Song, YB
Zhang, XB
Chi, DP
机构
[1] Liaoning Univ, Dept Phys, Shenyang 110036, Peoples R China
[2] Jinzhou Med Sci Coll, Fac Anim Sci & Vet Med, Jinzhou 121001, Peoples R China
[3] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
关键词
D O I
10.1088/0256-307X/20/8/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An almost-Poisson, bracket is constructed for the regular Hamiltonian formulation of autoparallels on Riemann-Cartan spacetime, which is considered to be the motion trajectory of spinless particles in the space. This bracket satisfies the usual properties of a Poisson bracket except for the Jacobi identity. There does not exist a usual Poisson structure for the system although a special Lagrangian can be found for the case that the contracted torsion tensor is a gradient of a scalar field and the traceless part is zero. The almost-Poisson bracket is decomposed into a sum of the usual Poisson bracket and a "Lie-Poisson" bracket, which is applied to obtain a formula for the Jacobiizer and to decompose a non-Hamiltonian dynamical vector field for the system. The almost-Poisson structure is also globally formulated by means of a pseudo-symplectic two-form on the cotangent bundle to the spacetime manifold.
引用
收藏
页码:1192 / 1195
页数:4
相关论文
共 50 条
  • [1] Spinning branes in Riemann-Cartan spacetime
    Vasilic, Milovan
    Vojinovic, Marko
    PHYSICAL REVIEW D, 2008, 78 (10):
  • [2] GEOMETRIC OPTICS IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 98 (8-9) : 411 - 413
  • [3] Tidal heating in a Riemann-Cartan spacetime
    Hensh, Sudipta
    Liberati, Stefano
    Vitagliano, Vincenzo
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [4] Deviation equation in Riemann-Cartan spacetime
    Puetzfeld, Dirk
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [5] Gravitation and Electromagnetism as Geometrical Objects of a Riemann-Cartan Spacetime Structure
    Giglio, J. Fernando T.
    Rodrigues, Waldyr A., Jr.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (03) : 649 - 664
  • [6] Gravitation and Electromagnetism as Geometrical Objects of a Riemann-Cartan Spacetime Structure
    J. Fernando T. Giglio
    Waldyr A. Rodrigues
    Advances in Applied Clifford Algebras, 2012, 22 : 649 - 664
  • [7] PROPERTIES OF A SPIN FLUID IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    PLATANIA, G
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 95 (08) : 425 - 428
  • [8] SEMICLASSICAL PARTICLES WITH ARBITRARY SPIN IN THE RIEMANN-CARTAN SPACETIME
    NOMURA, K
    SHIRAFUJI, T
    HAYASHI, K
    PROGRESS OF THEORETICAL PHYSICS, 1992, 87 (05): : 1275 - 1291
  • [9] Zero-size objects in Riemann-Cartan spacetime
    Vasilic, Milovan
    Vojinovic, Marko
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (08):
  • [10] QUASI-MAXWELLIAN FIELDS IN RIEMANN-CARTAN SPACETIME
    DEANDRADE, LCG
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1989, 28 (01) : 79 - 81