New quantum codes from dual-containing cyclic codes over finite rings

被引:0
|
作者
Yongsheng Tang
Shixin Zhu
Xiaoshan Kai
Jian Ding
机构
[1] Hefei Normal University,School of Mathematics and Statistics
[2] Hefei University of Technology,School of Mathematics
[3] Anhui Xinhua University,Department of Common Course
来源
关键词
Quantum codes; Dual-containing cyclic codes; Gray map; Trace map;
D O I
暂无
中图分类号
学科分类号
摘要
Let R=F2m+uF2m+⋯+ukF2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\mathbb {F}_{2^{m}}+u\mathbb {F}_{2^{m}}+\cdots +u^{k}\mathbb {F}_{2^{m}}$$\end{document}, where F2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^{m}}$$\end{document} is the finite field with 2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{m}$$\end{document} elements, m is a positive integer, and u is an indeterminate with uk+1=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^{k+1}=0.$$\end{document} In this paper, we propose the constructions of two new families of quantum codes obtained from dual-containing cyclic codes of odd length over R. A new Gray map over R is defined, and a sufficient and necessary condition for the existence of dual-containing cyclic codes over R is given. A new family of 2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{m}$$\end{document}-ary quantum codes is obtained via the Gray map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R. In particular, a new family of binary quantum codes is obtained via the Gray map, the trace map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R.
引用
收藏
页码:4489 / 4500
页数:11
相关论文
共 50 条
  • [11] A family of Hermitian dual-containing constacyclic codes and related quantum codes
    Zhao, Xubo
    Li, Xiaoping
    Wang, Qiang
    Yan, Tongjiang
    QUANTUM INFORMATION PROCESSING, 2021, 20 (05)
  • [12] Three classes of optimal Hermitian dual-containing codes and quantum codes
    Huang, Shan
    Zhu, Shixin
    Li, Jin
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [13] A class of Hermitian dual-containing constacyclic codes and related quantum codes
    Li, Ping
    He, Xiaojing
    Kai, Xiaoshan
    Li, Jin
    QUANTUM INFORMATION PROCESSING, 2023, 22 (12)
  • [14] Three classes of optimal Hermitian dual-containing codes and quantum codes
    Shan Huang
    Shixin Zhu
    Jin Li
    Quantum Information Processing, 22
  • [15] A family of Hermitian dual-containing constacyclic codes and related quantum codes
    Xubo Zhao
    Xiaoping Li
    Qiang Wang
    Tongjiang Yan
    Quantum Information Processing, 2021, 20
  • [16] The Hermitian dual-containing LCD BCH codes and related quantum codes
    Li, Fengwei
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (03): : 579 - 596
  • [17] The Hermitian dual-containing LCD BCH codes and related quantum codes
    Fengwei Li
    Cryptography and Communications, 2022, 14 : 579 - 596
  • [18] QUANTUM CODES FROM CYCLIC CODES OVER FINITE RING
    Qian, Jianfa
    Ma, Wenping
    Guo, Wangmei
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (06) : 1277 - 1283
  • [19] Construction of new quantum codes via Hermitian dual-containing matrix-product codes
    Cao, Meng
    Cui, Jianlian
    QUANTUM INFORMATION PROCESSING, 2020, 19 (12)
  • [20] Construction of new quantum codes via Hermitian dual-containing matrix-product codes
    Meng Cao
    Jianlian Cui
    Quantum Information Processing, 2020, 19