Acoustic-based LEGO recognition using attention-based convolutional neural networks

被引:0
|
作者
Van-Thuan Tran
Chia-Yang Wu
Wei-Ho Tsai
机构
[1] National Taipei University of Technology,Department of Electronic Engineering
来源
关键词
LEGO recognition; Acoustic-based object detection; Attention mechanism; Audio classification; Audio features; Convolutional neural networks; Time-distributed layers;
D O I
暂无
中图分类号
学科分类号
摘要
This work investigates the classification of LEGO types using deep learning-based audio classification approaches. The motivation for this investigation is based on the following assumption. If objects of the same shape fall freely from a certain height and hit a fixed plane, the impact sounds will be very similar, so we can distinguish the same types of objects from the others. Applying this idea to LEGO recognition, we collect impact sounds of 200 LEGO objects that fall from a height of about 30cm from a designated plane, and design a CNN-based recognition system that processes the impact sounds to determine the type of LEGO it belongs to. Recognizing that the fall of LEGO results in the main impact sound (i.e., only the sound at the moment of impact) and several subsequent sounds, we examine whether considering only the first impact sound or all sounds brings about better classification accuracies. We propose a compact two-dimensional CNN model, namely LegoNet, which is designed with a frame-level attention module at the input spectrogram and time-distributed fully-connected layers. Our experiments show that free-fall impact sounds can be used efficiently for accurate object recognition, and the proposed LegoNet, with a much smaller size, achieves better accuracy and robustness compared to baseline models. Also, using the whole sequence of impact sounds is more informative for LEGO classification than only considering the first impact sound. Moreover, it is found that utilizing data of specific object postures can help to improve the classifier’s performance in the case of small training data. The proposed approach can be employed as an extra module to build intelligent agents or object classification systems that require a rich understanding of the surrounding physical world.
引用
收藏
相关论文
共 50 条
  • [41] Attention-Based Spatio-Temporal Modeling with 3D Convolutional Neural Networks for Dynamic Gesture Recognition
    Hu, Yutong
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VII, 2025, 15037 : 469 - 480
  • [42] A Lightweight Attention-Based Convolutional Neural Networks for Fresh-Cut Flower Classification
    Fei, Yeqi
    Li, Zhenye
    Zhu, Tingting
    Ni, Chao
    IEEE ACCESS, 2023, 11 : 17283 - 17293
  • [43] Hybrid data augmentation and deep attention-based dilated convolutional-recurrent neural networks for speech emotion recognition
    Pham, Nhat Truong
    Dang, Duc Ngoc Minh
    Nguyen, Ngoc Duy
    Nguyen, Thanh Thi
    Nguyen, Hai
    Manavalan, Balachandran
    Lim, Chee Peng
    Nguyen, Sy Dzung
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 230
  • [44] Ascertaining Speech Emotion using Attention-based Convolutional Neural Network Framework
    Arya, Ashima
    Arya, Vaishali
    Kohli, Neha
    Sukhija, Namrata
    Ibrahim, Ashraf Osman
    Bharany, Salil
    Binzagr, Faisal
    Muchtar, Farkhana Binti
    Mamoun, Mohamed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 614 - 622
  • [45] Residential Appliance Detection Using Attention-based Deep Convolutional Neural Network
    Deng, Chunyu
    Wu, Kehe
    Wang, Binbin
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2022, 8 (02): : 621 - 633
  • [46] Handwritten/Printed Receipt Classification using Attention-Based Convolutional Neural Network
    Yang, Fan
    Jin, Lianwen
    Yang, Weixin
    Feng, Ziyong
    Zhang, Shuye
    PROCEEDINGS OF 2016 15TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2016, : 384 - 389
  • [47] Reconstruction of reservoir rock using attention-based convolutional recurrent neural network
    Kumar, Indrajeet
    Singh, Anugrah
    APPLIED COMPUTING AND GEOSCIENCES, 2024, 24
  • [48] Thank you for attention: A survey on attention-based artificial neural networks for automatic speech recognition
    Karmakar, Priyabrata
    Teng, Shyh Wei
    Lu, Guojun
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 23
  • [49] Multiscale Convolutional Attention-based Residual Network Expression Recognition
    Wang, Fei
    Zhang, Haijun
    JOURNAL OF INTERNET TECHNOLOGY, 2023, 24 (05): : 1169 - 1175
  • [50] An Attention-based Recurrent Convolutional Network for Vehicle Taillight Recognition
    Lee, Kuan-Hui
    Tagawa, Takaaki
    Pan, Jia-En M.
    Gaidon, Adrien
    Douillard, Bertrand
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 2365 - 2370