Attractivity for Differential Equations of Fractional order and ψ-Hilfer Type

被引:0
|
作者
J. Vanterler da C. Sousa
Mouffak Benchohra
Gaston M. N’Guérékata
机构
[1] Imecc-State University of Campinas,Department of Applied Mathematics
[2] Djillali Liabes University of Sidi Bel-Abbes,Laboratory of Mathematics
[3] Morgan State University,NEERLab, Department of Mathematics
关键词
Primary 26A33; Secondary 34A08; 34G20; -Hilfer fractional derivative; fractional differential equations; global attractivity: Krasnoselskii’s fixed point;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the overall solution attractivity of the fractional differential equation involving the ψ-Hilfer fractional derivative and using the Krasnoselskii’s fixed point theorem. We highlight some particular cases of the results presented here, especially involving the Riemann-Liouville, thus illustrating the broad class of fractional derivatives to which these results can be applied.
引用
收藏
页码:1188 / 1207
页数:19
相关论文
共 50 条
  • [31] Attractivity for fractional differential equations in Banach space
    Zhou, Yong
    APPLIED MATHEMATICS LETTERS, 2018, 75 : 1 - 6
  • [32] On the Nonlinear Impulsive Ψ-Hilfer Fractional Differential Equations
    Kucche, Kishor D.
    Kharade, Jyoti P.
    Sousa, J. Vanterler da C.
    MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (04) : 642 - 660
  • [33] Analysis on ψ-Hilfer Fractional Impulsive Differential Equations
    Karthikeyan, Kulandhaivel
    Karthikeyan, Panjaiyan
    Chalishajar, Dimplekumar N.
    Raja, Duraisamy Senthil
    Sundararajan, Ponnusamy
    SYMMETRY-BASEL, 2021, 13 (10):
  • [34] On the nonlinear (k, ψ)-Hilfer fractional differential equations
    Kucche, Kishor D.
    Mali, Ashwini D.
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [35] On the nonlinear Ψ-Hilfer hybrid fractional differential equations
    Kucche, Kishor D.
    Mali, Ashwini D.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03):
  • [36] Qualitative analysis of fractional differential equations with ψ-Hilfer fractional derivative
    Harikrishnan, Sugumaran
    Baghani, Omid
    Kanagarajan, Kuppusamy
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (01): : 1 - 11
  • [37] EXISTENCE AND CONTINUATION OF SOLUTIONS OF HILFER-KATUGAMPOLA-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
    Salamooni, Ahmad Y. A.
    Pawar, D. D.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2021, 13 (03): : 257 - 279
  • [38] Study on Sobolev type Hilfer fractional integro-differential equations with delay
    Haide Gou
    Baolin Li
    Journal of Fixed Point Theory and Applications, 2018, 20
  • [39] Study on Sobolev type Hilfer fractional integro-differential equations with delay
    Gou, Haide
    Li, Baolin
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01) : 1 - 26
  • [40] Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type
    Abbas, S.
    Benchohra, M.
    Lagreg, J. E.
    Alsaedi, A.
    Zhou, Y.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,