Influence of energy loss function to the Monte Carlo simulated electron backscattering coefficient

被引:0
|
作者
Haotian Chen
Yanbo Zou
Shifeng Mao
M. S. S. Khan
Károly Tőkési
Z. J. Ding
机构
[1] University of Science and Technology of China,Department of Physics
[2] University of Science and Technology of China,Hefei National Research Center for Physical Sciences at the Microscale
[3] Xinjiang Normal University,School of Physics & Electronic Engineering
[4] University of Science and Technology of China,Department of Nuclear Science and Engineering
[5] Institute for Nuclear Research (ATOMKI),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We report an improved calculation of the electron backscattering coefficients (BSCs) for beryllium, molybdenum and tungsten at electron energies of 0.1–100 keV based on an up-to-date Monte Carlo simulation method with different input of energy loss function (ELF) data. The electron inelastic cross-section is derived from the relativistic dielectric functional formalism, where the full Penn’s algorithm is applied for the extension of the ELF from the optical limit of q→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \to 0$$\end{document} into the q,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {q,\omega } \right)$$\end{document}-plane. We have found that the accuracy of energy loss function may affect largely the calculated BSC. We also show that this has close relationship with the f- and ps-sum rules.
引用
收藏
相关论文
共 50 条
  • [21] Monte Carlo strategies for simulations of electron backscattering from surfaces
    Jablonski, A
    Powell, CJ
    Tanuma, S
    SURFACE AND INTERFACE ANALYSIS, 2005, 37 (11) : 861 - 874
  • [22] Monte Carlo simulation of Tabata's electron backscattering experiments
    Kirihara, Y.
    Namito, Y.
    Iwase, H.
    Hirayama, H.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2010, 268 (15): : 2384 - 2390
  • [23] The Role of Molecular Structure in Monte Carlo Simulations of the Secondary Electron Yield and Backscattering Coefficient from Methacrylic Acid
    Wiciak-Pawlowska, Katarzyna
    Winiarska, Anna
    Taioli, Simone
    Dapor, Maurizio
    Franz, Malgorzata
    Franz, Jan
    MOLECULES, 2023, 28 (03):
  • [24] Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves
    Toth, M
    Phillips, MR
    SCANNING, 1998, 20 (06) : 425 - 432
  • [25] A PROGRAM FOR MONTE-CARLO SIMULATION OF ELECTRON-ENERGY LOSS IN NANOSTRUCTURES
    JOHNSON, S
    MACDONALD, NC
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1989, 7 (06): : 1513 - 1518
  • [26] Monte Carlo modeling of electron backscattering from carbon nanotube forests
    Alam, M. K.
    Yaghoobi, P.
    Nojeh, A.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (06): : C6J13 - C6J18
  • [27] Electron backscattering coefficients of molybdenum and tungsten based on the Monte Carlo simulations
    Yang, Lihao
    Hussain, Abrar
    Mao, Shifeng
    Da, Bo
    Tokesi, Karoly
    Ding, Z. J.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 553
  • [28] An improved Monte Carlo algorithm for elastic electron backscattering from surfaces
    Dimov, IT
    Atanassov, EI
    Durchova, MK
    LARGE-SCALE SCIENTIFIC COMPUTING, 2001, 2179 : 141 - 148
  • [29] MONTE-CARLO STUDY OF BACKSCATTERING AND SECONDARY-ELECTRON GENERATION
    DING, ZJ
    SHIMIZU, R
    SURFACE SCIENCE, 1988, 197 (03) : 539 - 554
  • [30] Monte Carlo simulations of electron transport in solids: applications to electron backscattering from surfaces
    Jablonski, A
    Powell, CJ
    APPLIED SURFACE SCIENCE, 2005, 242 (3-4) : 220 - 235