Impact of the time scale of model sensitivity response on coupled model parameter estimation

被引:0
|
作者
Chang Liu
Shaoqing Zhang
Shan Li
Zhengyu Liu
机构
[1] Harbin Engineering University,College of Automation
[2] NOAA GFDL—University of Wisconsin — Madison Joint Visit Program,Physical Oceanography Laboratory/CIMST
[3] Ocean University of China and Qingdao National Laboratory for Marine Science and Technology,International Center for Climate and Environment t sciences, Institute of Atmospheric Physics
[4] Chinese Academy of Sciences,Laboratory for Climate and Ocean—Atmosphere Studies (LaCOAS), Department of Atmospheric and Oceanic Sciences, School of Physics
[5] Peking University,Center for Climate Research and Department of Atmospheric and Oceanic Sciences
[6] University of Wisconsin — Madison,undefined
来源
关键词
coupled model; parameter estimation; time scale of model sensitivity; 耦合模式; 参数估计; 模式敏感性响应时间尺度;
D O I
暂无
中图分类号
学科分类号
摘要
That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.
引用
收藏
页码:1346 / 1357
页数:11
相关论文
共 50 条
  • [21] Sensitivity Analysis and Parameter Estimation of Signal Transduction Pathways Model
    Jia, Jianfang
    Yue, Hong
    ASCC: 2009 7TH ASIAN CONTROL CONFERENCE, VOLS 1-3, 2009, : 1357 - 1362
  • [22] Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty
    Hossain, F
    Anagnostou, EN
    Dinku, T
    Borga, M
    HYDROLOGICAL PROCESSES, 2004, 18 (17) : 3277 - 3291
  • [23] Parameter Estimation and Sensitivity Analysis of Dysentery Diarrhea Epidemic Model
    Berhe, Hailay Weldegiorgis
    Makinde, Oluwole Daniel
    Theuri, David Mwangi
    JOURNAL OF APPLIED MATHEMATICS, 2019, 2019
  • [24] An anisotropic viscoelastoplastic model for composites - sensitivity analysis and parameter estimation
    Saleeb, AF
    Wilt, TW
    Al-Zoubi, NR
    Gendy, AS
    COMPOSITES PART B-ENGINEERING, 2003, 34 (01) : 21 - 39
  • [25] Sensitivity analysis for a thermohydrodynamic model: Uncertainty analysis and parameter estimation
    Fiorini, Camilla
    Puscas, Maria Adela
    Despres, Bruno
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2024, 105 (25-33) : 25 - 33
  • [26] Sensitivity analysis and parameter estimation for a model of Chlamydia Trachomatis infection
    Burns, J.A.
    Cliff, E.M.
    Doughty, S.E.
    Journal of Inverse and Ill-Posed Problems, 2007, 15 (03): : 243 - 256
  • [27] Impact of Measurement Selection on Load Model Parameter Estimation
    Guo, Siming
    Shetye, Komal S.
    Overbye, Thomas J.
    Zhu, Hao
    2017 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2017,
  • [28] Parameter estimation of multiple item response profile model
    Cho, Sun-Joo
    Partchev, Ivailo
    De Boeck, Paul
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (03): : 438 - 466
  • [29] Estimation of frequency response function using parameter model
    Cao, Jian
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2011, 31 (01): : 70 - 73
  • [30] Parameter estimation of time varying mixed AR model
    Kong Zhi Li Lun Yu Ying Yong, 5 (733-735, 738):