Eigenfunctions and Fundamental Solutions of the Fractional Laplace and Dirac Operators: The Riemann-Liouville Case

被引:0
|
作者
M. Ferreira
N. Vieira
机构
[1] Polytechnic Institute of Leiria,School of Technology and Management
[2] University of Aveiro,Department of Mathematics, CIDMA
来源
关键词
Fractional partial differential equations; Fractional Laplace and Dirac operators; Riemann-Liouville derivatives and integrals of fractional order; Eigenfunctions and fundamental solution; Laplace transform; Mittag-Leffler function; Primary 35R11; Secondary 30G35; 26A33; 35P10; 35A22; 35A08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator Δ+(α,β,γ):=Dx0+1+α+Dy0+1+β+Dz0+1+γ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _+^{(\alpha , \beta , \gamma )}:= D_{x_0^+}^{1+\alpha } +D_{y_0^+}^{1+\beta } +D_{z_0^+}^{1+\gamma },$$\end{document} where (α,β,γ)∈]0,1]3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta , \gamma ) \in \,]0,1]^3$$\end{document}, and the fractional derivatives Dx0+1+α,Dy0+1+β,Dz0+1+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{x_0^+}^{1+\alpha }, D_{y_0^+}^{1+\beta }, D_{z_0^+}^{1+\gamma }$$\end{document} are in the Riemann–Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator Δ+(α,β,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _+^{(\alpha ,\beta ,\gamma )}$$\end{document} in classes of functions admitting a summable fractional derivative. Making use of the Mittag–Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.
引用
收藏
页码:1081 / 1100
页数:19
相关论文
共 50 条
  • [31] On Weighted (k, s)-Riemann-Liouville Fractional Operators and Solution of Fractional Kinetic Equation
    Samraiz, Muhammad
    Umer, Muhammad
    Kashuri, Artion
    Abdeljawad, Thabet
    Iqbal, Sajid
    Mlaiki, Nabil
    FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [32] REGULARITY OF MILD SOLUTIONS TO FRACTIONAL CAUCHY PROBLEMS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Li, Ya-Ning
    Sun, Hong-Rui
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [33] Positive solutions for a system of Riemann-Liouville fractional boundary value problems withp-Laplacian operators
    Tudorache, Alexandru
    Luca, Rodica
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [34] Positive solutions for a fractional configuration of the Riemann-Liouville semilinear differential equation
    Azzaoui, Bouchra
    Tellab, Brahim
    Zennir, Khaled
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022,
  • [35] Some Properties for Solutions of Riemann-Liouville Fractional Differential Systems with a Delay
    Zhao, Jing
    Meng, Fanwei
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [36] Existence of Solutions for Riemann-Liouville Fractional Dirichlet Boundary Value Problem
    Li, Zhiyu
    IRANIAN JOURNAL OF SCIENCE, 2025, 49 (01) : 161 - 167
  • [37] On asymptotics of solutions for superdiffusion and subdiffusion equations with the Riemann-Liouville fractional derivative
    Li, Zhiqiang
    Fan, Yanzhe
    AIMS MATHEMATICS, 2023, 8 (08): : 19210 - 19239
  • [38] Positivity and uniqueness of solutions for Riemann-Liouville fractional problem of delta types
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Baleanu, Dumitru
    Yousif, Majeed A.
    Ibrahim, Ibrahim S.
    Abdelwahed, Mohamed
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 114 : 173 - 178
  • [39] Positive Solutions for a Semipositone Singular Riemann-Liouville Fractional Differential Problem
    Agarwal, Ravi P.
    Luca, Rodica
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (7-8) : 823 - 831
  • [40] EXACT SOLUTIONS OF LINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES
    Agarwal, Ravi P.
    Hristova, Snezhana
    O'Regan, Donal
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (03) : 779 - 791