Machine learning-based analysis of adverse events in mesh implant surgery reports

被引:0
|
作者
Bala, Indu [1 ]
Kelly, Thu-Lan [2 ]
Stanford, Ty [2 ]
Gillam, Marianne H. [3 ]
Mitchell, Lewis [1 ]
机构
[1] Univ Adelaide, Sch Comp & Math Sci, Adelaide 5005, Australia
[2] Univ South Australia, Clin & Hlth Sci, Adelaide 5001, Australia
[3] Univ South Australia, Allied Hlth & Human Performance, Adelaide 5001, Australia
基金
英国医学研究理事会;
关键词
Adverse events; Topic modeling; Mesh; Implantable device; Hierarchical stochastic block model; HERNIA REPAIR; VAGINAL MESH; CONTROVERSIES; COMPLICATIONS;
D O I
10.1007/s13278-024-01229-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mesh implant surgery, commonly used for various medical conditions, has been linked to a range of negative effects, significantly impacting patient experiences and outcomes. Additionally, the growing volume of medical data, especially text-based reports, presents challenges in deriving meaningful insights for informed healthcare decisions. To address these challenges, our study extensively analyzed the Manufacturer and User Facility Device Experience (MAUDE) dataset from 2000 to 2021. We have meticulously identified a range of adverse events associated with mesh implant surgeries, including Dyspareunia, Urinary problems, Chronic Inflammation, Prolapse Recurrence, Mesh Erosion, Urinary Tract Infections, discomfort, and sleep disturbances. Using topic modeling, we explored patient experiences and the interrelationships among these adverse events. This approach uncovered key topics linked to mesh surgery, such as Stress Urinary Incontinence, Incisional Hernia, Inguinal Hernia, and Umbilical Hernia, along with their side effects. While the analysis focused on common symptoms such as pain, infection, and bleeding, it also brought to light specific symptoms like sleeping issues, mental stress, and discomfort. We also examined the interconnectedness of these adverse events with identified topics and their temporal trends, revealing shifts in patient experiences over time. Notably, there was an increase in reports of Stress Urinary Incontinence around 2011-2012 and a surge in Inguinal Hernia concerns in 2017-2018. This study provides a comprehensive understanding of adverse events and associated topics in mesh implant surgeries, contributing valuable insights into patient experiences and aiding in informed healthcare decision-making.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Machine Learning-based Software Effort Estimation : An Analysis
    Polkowski, Zdzislaw
    Vora, Jayneel
    Tanwar, Sudeep
    Tyagi, Sudhanshu
    Singh, Pradeep Kumar
    Singh, Yashwant
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2019), 2019,
  • [32] Machine Learning-based Fundamental Stock Prediction Using Companies' Financial Reports
    Abdi, Kamran
    Rezaei, Hossein
    Hooshmand, Mohsen
    2024 32ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEE 2024, 2024, : 581 - 585
  • [33] Machine learning-based analysis of adolescent gambling factors
    Seo, Wonju
    Kim, Namho
    Lee, Sang-Kyu
    Park, Sung-Min
    JOURNAL OF BEHAVIORAL ADDICTIONS, 2020, 9 (03) : 734 - 743
  • [34] Machine Learning-Based Sentiment Analysis of Twitter Data
    Karthiga, M.
    Kumar, Sathish G.
    Aravindhraj, N.
    Priyanka, S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATION ENGINEERING (ICACCE-2019), 2019,
  • [35] RisklnDroid: Machine Learning-Based Risk Analysis on Android
    Merlo, Alessio
    Georgiu, Gabriel Claudiu
    ICT SYSTEMS SECURITY AND PRIVACY PROTECTION, SEC 2017, 2017, 502 : 538 - 552
  • [36] Machine Learning-Based Sentiment Analysis for Twitter Accounts
    Hasan, Ali
    Moin, Sana
    Karim, Ahmad
    Shamshirband, Shahaboddin
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2018, 23 (01)
  • [37] Machine learning-based myocardial infarction bibliometric analysis
    Fang, Ying
    Wu, Yuedi
    Gao, Lijuan
    FRONTIERS IN MEDICINE, 2025, 12
  • [38] Machine learning-based financial analysis of merger and acquisitions
    Kalaivani, S.
    Sivakumar, K.
    Vijayarangam, J.
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2024, 15 (03) : 106 - 111
  • [39] MACHINE LEARNING-BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
    Piotrowska, Magdalena
    Korvel, Grazina
    Kostek, Bozena
    Ciszewski, Tomasz
    Czyzewski, Andrzej
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2019, 29 (02) : 393 - 405
  • [40] Machine Learning-Based Queueing Time Analysis in XGPON
    Ismail, N. A.
    Idrus, S. M.
    Iqbal, F.
    Zin, A. M.
    Atan, F.
    Ali, N.
    INTERNATIONAL JOURNAL OF NANOELECTRONICS AND MATERIALS, 2021, 14 : 157 - 163