The Benci–Cerami problem for the fractional Choquard equation with critical exponent

被引:0
|
作者
Xiaoming He
Xin Zhao
Wenming Zou
机构
[1] Minzu University of China,College of Science
[2] Tsinghua University,Department of Mathematical Sciences
来源
manuscripta mathematica | 2023年 / 170卷
关键词
35J20; 35A15; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of bound states for the fractional Choquard equation (-Δ)su+V(x)u=(Iα∗|u|2α,s∗)|u|2α,s∗-2u,x∈RN,u∈Ds,2(RN),u(x)>0,x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^su+V(x)u=(I_{\alpha }*|u|^{2^*_{\alpha ,s}})|u|^{2^*_{\alpha ,s}-2}u,&{}x\in {\mathbb {R}}^N, \\ u\in D^{s,2}({\mathbb {R}}^N),~~u(x)>0,&{}x\in {\mathbb {R}}^N, \end{array}\right. \end{aligned}$$\end{document}where Iα(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\alpha }(x)$$\end{document} is the Riesz potential, s∈(0,1),N>2s,0<α<min{N,4s},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1), N>2s, 0<\alpha <\min \{N,4s\},$$\end{document} and 2α,s∗=2N-αN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*_{\alpha ,s}=\frac{2N-\alpha }{N-2s}$$\end{document} is the fractional Hardy–Littlewood–Sobolev critical exponent, (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} is the fractional Laplacian operator. We prove some new nonlocal versions of concentration-compactness and global compactness results. Under some suitable assumptions on the potential function V introduced by Benci and Cerami, we show the existence of high energy solution. This study can be considered as a counterpart of the Benci–Cerami problem in the context of high energy solutions for the fractional Choquard equations in the whole space RN.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N.$$\end{document}
引用
收藏
页码:193 / 242
页数:49
相关论文
共 50 条
  • [41] FRACTIONAL KIRCHHOFF-CHOQUARD EQUATIONS INVOLVING UPPER CRITICAL EXPONENT AND GENERAL NONLINEARITY
    Yu, Xue
    Sang, Yanbin
    Han, Zhiling
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2023, 7 (01): : 67 - 86
  • [42] The Critical Exponent(s) for the Semilinear Fractional Diffusive Equation
    Marcello D’Abbicco
    Marcelo Rempel Ebert
    Tiago Henrique Picon
    Journal of Fourier Analysis and Applications, 2019, 25 : 696 - 731
  • [43] Bifurcation results for a fractional elliptic equation with critical exponent in
    Dipierro, Serena
    Medina, Maria
    Peral, Ireneo
    Valdinoci, Enrico
    MANUSCRIPTA MATHEMATICA, 2017, 153 (1-2) : 183 - 230
  • [44] The Critical Exponent(s) for the Semilinear Fractional Diffusive Equation
    D'Abbicco, Marcello
    Ebert, Marcelo Rempel
    Picon, Tiago Henrique
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (03) : 696 - 731
  • [45] On a Fractional p-Laplacian Equation with Critical Fractional Sobolev Exponent
    Ouarda Saifia
    Jean Vélin
    Mediterranean Journal of Mathematics, 2023, 20
  • [46] On a Fractional p-Laplacian Equation with Critical Fractional Sobolev Exponent
    Saifia, Ouarda
    Velin, Jean
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [47] Regularity for critical fractional Choquard equation with singular potential and its applications
    Liu, Senli
    Yang, Jie
    Su, Yu
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [48] Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth
    Yang, Zhipeng
    Zhao, Fukun
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 732 - 774
  • [49] ON A CLASS OF CHOQUARD-TYPE EQUATION WITH UPPER CRITICAL EXPONENT AND INDEFINITE LINEAR PART
    Wu, Huiling
    Xu, Haiping
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (02): : 464 - 478
  • [50] Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy–Littlewood–Sobolev critical exponent
    H. Bueno
    N. da Hora Lisboa
    L. L. Vieira
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71