Modelling and Simulation of Planar Heterojunction Perovskite Solar Cell featuring CH3NH3PbI3, CH3NH3SnI3, CH3NH3GeI3 Absorber Layers

被引:0
|
作者
Jaspinder Kaur
Surender Kumar
Rikmantra Basu
Ajay Kumar Sharma
机构
[1] NIT,CSE Department
来源
Silicon | 2024年 / 16卷
关键词
CH; NH; PbI; CH; NH; SnI; CH; NH; GeI; SnO; SiGe; HTL; BSF;
D O I
暂无
中图分类号
学科分类号
摘要
Currently, organic–inorganic metal halide perovskite material based Photovoltaic cell have achieved an impressive level of success due to their unique properties in the photovoltaic industry. In this paper, primary goal is to examine and compare the characteristics of performance of Pb, Sn and Ge perovskite solar cell structure with additional hole transport and back surface field layer of group IV alloy to achieve the improved efficiency. The simulated device structure consists of electron transport/absorber/hole-transport/back surface field layers where SnO2 material used for electron transport layer (ETL), SiGe and Spiro-OMeTAD materials used for transporting hole layers (HTLs), back-surface field (BSF) layer is of SiGeSn and perovskite absorber layer material are CH3NH3PbI3, CH3NH3SnI3, CH3NH3GeI3, respectively. A comparative analysis is made between three different solar cell structures which is based on Pb, Sn and Ge perovskite material. Higher conversion efficiency is obtained with Pb perovskite solar cell in comparison to Sn and Ge based solar cells. CH3NH3PbI3 exhibits better conversion efficiency as compared to the CH3NH3SnI3 and CH3NH3GeI3 while using the same layer thickness.
引用
收藏
页码:1441 / 1451
页数:10
相关论文
共 50 条
  • [41] Infrared and 2-Dimensional Correlation Spectroscopy Study of the Effect of CH3NH3PbI3 and CH3NH3SnI3 Photovoltaic Perovskites on Eukaryotic Cells
    Quaroni, Luca
    Benmessaoud, Iness
    Vileno, Bertrand
    Horvath, Endre
    Forro, Laszlo
    MOLECULES, 2020, 25 (02):
  • [42] Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3
    Butler, Keith T.
    Frost, Jarvist M.
    Walsh, Aron
    MATERIALS HORIZONS, 2015, 2 (02) : 228 - 231
  • [43] Spin transport in CH3NH3PbI3
    Xu, Qingyu
    Liu, Er
    Qin, Sai
    Shi, Shan
    Shen, Kai
    Xu, Mingxiang
    Zhai, Ya
    Dong, Shuai
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (40)
  • [44] On the ferroelectricity of CH3NH3PbI3 perovskites
    Alexander D. Schulz
    Holger Röhm
    Tobias Leonhard
    Susanne Wagner
    Michael J. Hoffmann
    Alexander Colsmann
    Nature Materials, 2019, 18 : 1050 - 1050
  • [45] On the ferroelectricity of CH3NH3PbI3 perovskites
    Schulz, Alexander D.
    Roehm, Holger
    Leonhard, Tobias
    Wagner, Susanne
    Hoffmann, Michael J.
    Colsmann, Alexander
    NATURE MATERIALS, 2019, 18 (10) : 1050 - 1050
  • [46] Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks
    Phillips, Laurie J.
    Rashed, Atef M.
    Treharne, Robert E.
    Kay, James
    Yates, Peter
    Mitrovic, Ivona Z.
    Weerakkody, Ayendra
    Hall, Steve
    Durose, Ken
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 147 : 327 - 333
  • [47] Tetragonal CH3NH3PbI3 is ferroelectric
    Rakita, Yevgeny
    Bar-Elli, Omri
    Meirzadeh, Elena
    Kaslasi, Hadar
    Peleg, Yagel
    Hodes, Gary
    Lubomirsky, Igor
    Oron, Dan
    Ehre, David
    Cahen, David
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (28) : E5504 - E5512
  • [48] Humidity Sensitivity Behavior of CH3NH3PbI3 Perovskite
    Zhao, Xuefeng
    Sun, Yuting
    Liu, Shuyu
    Chen, Gaifang
    Chen, Pengfei
    Wang, Jinsong
    Cao, Wenjun
    Wang, Chunchang
    NANOMATERIALS, 2022, 12 (03)
  • [49] Mechanical ductile detwinning in CH3NH3PbI3 perovskite
    Yang, Li
    Liu, Jinjie
    Lin, Yanwen
    Xu, Ke
    Cao, Xuezheng
    Zhang, Zhisen
    Wu, Jianyang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (38) : 21863 - 21873
  • [50] Charge transport in bulk CH3NH3PbI3 perovskite
    Slonopas, Andre
    Foley, Benjamin J.
    Choi, Joshua J.
    Gupta, Mool C.
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (07)