Integrable system modelling shallow water waves: Kaup–Boussinesq shallow water system

被引:0
|
作者
A. H. Bhrawy
M. M. Tharwat
M. A. Abdelkawy
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
[2] Beni-Suef University,Department of Mathematics, Faculty of Science
来源
Indian Journal of Physics | 2013年 / 87卷
关键词
Extended F-expansion method; Exact solutions; Variant Boussinesq equations; (1 + 1)-Dimensional dispersive long wave equation; Kaup–Boussinesq system; 02.30.Gp; 02.30.Jr; 47.11.0.−j;
D O I
暂无
中图分类号
学科分类号
摘要
Extended F-expansion method is proposed to seek exact solutions of the integrable nonlinear Kaup–Boussinesq shallow water system, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the extended F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously a number of periodic wave solutions expressed by various Jacobi elliptic functions for the integrable nonlinear Kaup-Boussinesq shallow water system. In the limiting cases, the solitary wave solutions are obtained as well.
引用
收藏
页码:665 / 671
页数:6
相关论文
共 50 条
  • [21] Solitary waves of the fractal Whitham–Broer–Kaup equation in shallow water
    Yan-Hong Liang
    Guo-Dong Wang
    Kang-Jia Wang
    GEM - International Journal on Geomathematics, 2021, 12
  • [22] On a Whitham-Broer-Kaup-like system arising in the oceanic shallow water
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    CHINESE JOURNAL OF PHYSICS, 2023, 82 : 194 - 200
  • [23] Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq-Burgers system
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    CHAOS SOLITONS & FRACTALS, 2021, 147
  • [24] (2+1)-dimensional Broer–Kaup system of shallow water waves and similarity solutions with symbolic computation
    Bo Tian
    He Li
    Yi-Tian Gao
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 783 - 790
  • [25] Ocean shallow-water studies on a generalized Boussinesq-Broer-Kaup-Whitham system: Painleve analysis and similarity reductions
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    CHAOS SOLITONS & FRACTALS, 2023, 169
  • [26] Wave breaking and the generation of undular bores in an integrable shallow water system
    El, GA
    Grimshaw, RHJ
    Kamchatnov, AM
    STUDIES IN APPLIED MATHEMATICS, 2005, 114 (04) : 395 - 411
  • [27] On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system
    Mustafa, Octavian G.
    WAVE MOTION, 2009, 46 (06) : 397 - 402
  • [28] Two-component integrable systems modelling shallow water waves: The constant vorticity case
    Ivanov, Rossen
    WAVE MOTION, 2009, 46 (06) : 389 - 396
  • [29] WAVES IN SHALLOW WATER
    SHINBROT, M
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1962, 9 (03) : 234 - 244
  • [30] Interactions of solitons in a variable-coefficient generalized Boussinesq system in shallow water
    Meng, De-Xin
    Gao, Yi-Tian
    Wang, Lei
    Gai, Xiao-Ling
    Lin, Guo-Dong
    PHYSICA SCRIPTA, 2010, 82 (04)