A deep learning framework with edge computing for severity level detection of diabetic retinopathy

被引:1
|
作者
Al-Karawi A. [1 ]
Avşar E. [2 ,3 ]
机构
[1] Department of Electrical and Electronics Engineering, Çukurova University, Adana
[2] National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Hirtshals
[3] Department of Computer Engineering, Dokuz Eylül University, İzmir
关键词
Classification; Concatenation ensemble; Deep learning; Diabetic retinopathy; Edge computing; Fundus;
D O I
10.1007/s11042-023-15131-4
中图分类号
学科分类号
摘要
Diabetic retinopathy is one of the major causes of the vision loss worldwide. Its timely detection is critical for planning an efficient treatment process. Typically, fundus images are taken for diagnosis of diabetic retinopathy and determining its corresponding severity level. In this study, a framework that uses a mobile edge device for detecting the severity level of diabetic retinopathy is proposed. For this purpose, a dataset of fundus images containing five different diabetic retinopathy severity levels is utilized. The mobile device is responsible for performing the edge processing operations in which the fundus images are preprocessed by cropping, unsharp masking, and resizing. The preprocessed images are then transmitted to a cloud computing platform over the internet. In the cloud server, a concatenation ensemble deep learning models is trained for detecting the severity level of the diabetic retinopathy. The ensemble model involves three benchmark convolutional neural network architectures that are EfficientNetB7, ResNet50, and VGG19. The classification accuracy achieved using the concatenation ensemble is 96%, which is higher than those obtained via individual convolutional neural network models. In addition, contributions of edge computing are shown by calculating the total amount of transmitted data and the response time from the cloud server. It was observed that for classifying the entire test set 2984.52 Kb of less data, corresponding to average data size reduction of 85.2%, was transmitted and the response time was reduced by 6.14 seconds when the preprocessing steps are performed at the edge device. © 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:37687 / 37708
页数:21
相关论文
共 50 条
  • [21] Diabetic retinopathy detection and severity classification using optimized deep learning with explainable AI technique
    Lalithadevi B.
    Krishnaveni S.
    Multimedia Tools Appl, 2024, 42 (89949-90013): : 89949 - 90013
  • [22] Diabetic Retinopathy Improved Detection Using Deep Learning
    Ayala, Angel
    Ortiz Figueroa, Tomas
    Fernandes, Bruno
    Cruz, Francisco
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [23] Diabetic retinopathy detection by optimized deep learning model
    Rachapudi, Venubabu
    Rao, K. Subba
    Rao, T. Subha Mastan
    Dileep, P.
    Deepika Roy, T. L.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 27949 - 27971
  • [24] Intelligent Diabetic Retinopathy Detection using Deep Learning
    Nugroho, Hanung Adi
    Frannita, Eka Legya
    2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,
  • [25] Deep Learning Based Models for Detection of Diabetic Retinopathy
    Akgul, Ismail
    Yavuz, Omer Cagri
    Yavuz, Ugur
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2023, 17 (04): : 581 - 587
  • [26] Diabetic Retinopathy Detection Using Deep Learning Models
    Kanakaprabha, S.
    Radha, D.
    Santhanalakshmi, S.
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 75 - 90
  • [27] On Deep Learning based algorithms for Detection of Diabetic Retinopathy
    Thanati, Haneesha
    Chalakkal, Renoh Johnson
    Abdulla, Waleed H.
    2019 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2019, : 197 - 203
  • [28] Diabetic retinopathy detection by optimized deep learning model
    Venubabu Rachapudi
    K. Subba Rao
    T. Subha Mastan Rao
    P. Dileep
    T.L. Deepika Roy
    Multimedia Tools and Applications, 2023, 82 : 27949 - 27971
  • [29] A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection
    Qummar, Sehrish
    Khan, Fiaz Gul
    Shah, Sajid
    Khan, Ahmad
    Shamshirband, Shahaboddin
    Rehman, Zia Ur
    Khan, Iftikhar Ahmed
    Jadoon, Waqas
    IEEE ACCESS, 2019, 7 : 150530 - 150539
  • [30] Multi-Level severity classification for diabetic retinopathy based on hybrid optimization enabled deep learning
    Beevi, S. Zulaikha
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84