Annealing Induced Re-crystallization in CH3NH3PbI3−xClx for High Performance Perovskite Solar Cells

被引:0
|
作者
Yingguo Yang
Shanglei Feng
Meng Li
Weidong Xu
Guangzhi Yin
Zhaokui Wang
Baoquan Sun
Xingyu Gao
机构
[1] Shanghai Institute of Applied Physics,
[2] Chinese Academy of Sciences,undefined
[3] University of Chinese Academy of Sciences,undefined
[4] Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices,undefined
[5] Institute of Functional Nano & Soft Materials (FUNSOM),undefined
[6] Soochow University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as hole conductor, a series of inverted planar CH3NH3PbI3−xClx perovskite solar cells (PSCs) were fabricated based on perovskite annealed by an improved time-temperature dependent (TTD) procedure in a flowing nitrogen atmosphere for different time. Only after an optimum annealing time, an optimized power conversion efficiency of 14.36% could be achieved. To understand their performance dependence on annealing time, an in situ real-time synchrotron-based grazing incidence X-ray diffraction (GIXRD) was used to monitor a step-by-step gradual structure transformation from distinct mainly organic-inorganic hybrid materials into highly ordered CH3NH3PbI3 crystal during annealing. However, a re-crystallization process of perovskite crystal was observed for the first time during such an annealing procedure, which helps to enhance the perovskite crystallization and preferential orientations. The present GIXRD findings could well explain the drops of the open circuit voltage (Voc) and the fill factor (FF) during the ramping of temperature as well as the optimized power conversion efficiency achieved after an optimum annealing time. Thus, the present study not only illustrates clearly the decisive roles of post-annealing in the formation of solution-processed perovskite to better understand its formation mechanism, but also demonstrates the crucial dependences of device performance on the perovskite microstructure in PSCs.
引用
收藏
相关论文
共 50 条
  • [41] Solvent-Assisted Preparation of High-Performance Mesoporous CH3NH3PbI3 Perovskite Solar Cells
    Li, Zhi-Hua
    Liu, Jie
    Ma, Jing-Yuan
    Jiang, Yan
    Ge, Qian-Qing
    Ding, Jie
    Hu, Jin-Song
    Wan, Li-Jun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (01) : 844 - 850
  • [42] Photoinduced ion-redistribution in CH3NH3PbI3 perovskite solar cells
    Yanagida, Masatoshi
    Shirai, Yasuhiro
    Khadka, Dhruba B.
    Miyano, Kenjiro
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (43) : 25118 - 25125
  • [43] Fabrication and Characterization of CH3NH3PbI3 Perovskite Solar Cells Added with Polysilanes
    Oku, Takeo
    Nomura, Junya
    Suzuki, Atsushi
    Tanaka, Hiroki
    Fukunishi, Sakiko
    Minami, Satoshi
    Tsukada, Shinichiro
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2018, 2018
  • [44] Defect Dynamics in Proton Irradiated CH3NH3PbI3 Perovskite Solar Cells
    Brus, Viktor V.
    Lang, Felix
    Bundesmann, Juergen
    Seidel, Sophie
    Denker, Andrea
    Rech, Bernd
    Landi, Giovanni
    Neitzert, Heinz C.
    Rappich, Joerg
    Nickel, Norbert H.
    ADVANCED ELECTRONIC MATERIALS, 2017, 3 (02):
  • [45] Pressure-assisted CH3NH3PbI3 morphology reconstruction to improve the high performance of perovskite solar cells
    Xiao, Junyan
    Yang, Yueyong
    Xu, Xin
    Shi, Jiangjian
    Zhu, Lifeng
    Lv, Songtao
    Wu, Huijue
    Luo, Yanhong
    Li, Dongmei
    Meng, Qingbo
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (10) : 5289 - 5293
  • [46] Hysteresis dependence on CH3NH3PbI3 deposition method in perovskite solar cells
    Fernandes, Silvia Leticia
    Bregadiolli, Bruna Andressa
    Veron, Anna Christina
    Miesch, Frank A.
    Zaghete, Maria Aparecida
    de Oliveira Graeff, Carlos Frederico
    THIN FILMS FOR SOLAR AND ENERGY TECHNOLOGY VIII, 2016, 9936
  • [47] Exploration of fabrication methods for planar CH3NH3PbI3 perovskite solar cells
    Kang, Rira
    Yeo, Jun-Seok
    Lee, Hyeon Jun
    Lee, Sehyun
    Kang, Minji
    Myoung, NoSoung
    Yim, Sang-Youp
    Oh, Seung-Hwan
    Kim, Dong-Yu
    NANO ENERGY, 2016, 27 : 175 - 184
  • [48] Additive Effects of Guanidinium Iodide on CH3NH3PbI3 Perovskite Solar Cells
    Kishimoto, Taku
    Oku, Takeo
    Suzuki, Atsushi
    Ueoka, Naoki
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (19):
  • [49] Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells
    Abdi-Jalebi, Mojtaba
    Dar, M. Ibrahim
    Sadhanala, Aditya
    Senanayak, Satyaprasad P.
    Gratzel, Michael
    Friend, Richard H.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (121):
  • [50] Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study
    Montoya De Los Santos, I
    Cortina-Marrero, Hugo J.
    Ruiz-Sanchez, M. A.
    Hechavarria-Difur, L.
    Sanchez-Rodriguez, F. J.
    Courel, Maykel
    Hu, Hailin
    SOLAR ENERGY, 2020, 199 : 198 - 205