Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty

被引:0
|
作者
W. N. Edeling
G. Iaccarino
P. Cinnella
机构
[1] Stanford University,Center for Turbulence Research
[2] Arts et Métiers ParisTech,Laboratoire DynFluid
来源
关键词
RANS modeling; Uncertainty quantification; Bayesian inference; Return to eddy viscosity; Lag model;
D O I
暂无
中图分类号
学科分类号
摘要
For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity model. The spatial structure of the perturbations is determined by the proposed transport equations, and thus does not have to be inferred from full-field reference data. Depending on a small number of model parameters and the local flow conditions, a ’return to eddy viscosity’ is described, and the underlying baseline state can be recovered. In order to make predictions with quantified uncertainty, we identify two separate methods, i.e. a data-free and data-driven approach. In the former no reference data is required and computationally inexpensive intervals are computed. When reference data is available, Bayesian inference can be applied to obtained informed distributions of the model parameters and simulation output.
引用
收藏
页码:593 / 616
页数:23
相关论文
共 50 条
  • [31] Space Weather with Quantified Uncertainties: Improving Space Weather Predictions with Data-Driven Models of the Solar Atmosphere and Inner Heliosphere
    Pogorelov, Nikolai V.
    Arge, Charles N.
    Caplan, Ronald M.
    Colella, Phillip
    Linker, Jon A.
    Singh, Talwinder
    Van Straalen, Brian
    Upton, Lisa
    Downs, Cooper
    Gebhart, Christopher
    Hegde, Dinesha V.
    Henney, Carl
    Jones, Shaela
    Johnston, Craig
    Kim, Tae K.
    Marble, Andrew
    Raza, Syed
    Stulajter, Miko M.
    Turtle, James
    15TH INTERNATIONAL CONFERENCE ON NUMERICAL MODELING OF SPACE PLASMA FLOWS, ASTRONUM-2023, 2024, 2742
  • [32] From Data to Uncertainty: An Efficient Integrated Data-Driven Sparse Grid Approach to Propagate Uncertainty
    Franzelin, Fabian
    Pflueger, Dirk
    SPARSE GRIDS AND APPLICATIONS - STUTTGART 2014, 2016, 109 : 29 - 49
  • [33] Uncertainty Propogation from the Cell Transmission Traffic Flow Model to Emisson Predictions: A Data-Driven Approach
    Sayegh, Arwa S.
    Connors, Richard D.
    Tate, James E.
    TRANSPORTATION SCIENCE, 2018, 52 (06) : 1327 - 1346
  • [34] Uncertainty quantification in data-driven stochastic subspace identification
    Reynders, Edwin P.B.
    2021, Academic Press (151)
  • [35] Offline Uncertainty Sampling in Data-driven Stochastic MPC
    Teutsch, Johannes
    Kerz, Sebastian
    Brudigam, Tim
    Wollherr, Dirk
    Leibold, Marion
    IFAC PAPERSONLINE, 2023, 56 (02): : 650 - 656
  • [36] Representations of epistemic uncertainty and awareness in data-driven strategies
    Angelelli, Mario
    Gervasi, Massimiliano
    Ciavolino, Enrico
    Soft Computing, 2024, 28 (23) : 13763 - 13780
  • [37] Bayesian uncertainty quantification for data-driven equation learning
    Martina-Perez, Simon
    Simpson, Matthew J.
    Baker, Ruth E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2254):
  • [38] A data-driven framework for uncertainty quantification of a fluidized bed
    Kotteda, V. M. Krushnarao
    Kommu, Anitha
    Kumar, Vinod
    2019 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2019,
  • [39] Uncertainty quantification in data-driven stochastic subspace identification
    Reynders, Edwin P. B.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 151
  • [40] Managing Uncertainty Information for Improved Data-Driven Modelling
    Rendall, Ricardo
    Reis, Marco S.
    Chin, Swee-Teng
    Chiang, Leo
    26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2016, 38B : 1575 - 1580