Reduction in the Resonance Error in Numerical Homogenization II: Correctors and Extrapolation

被引:0
|
作者
Antoine Gloria
Zakaria Habibi
机构
[1] Université Libre de Bruxelles (ULB),Project
[2] Inria Lille - Nord Europe,Team MEPHYSTO
关键词
Numerical homogenization; Resonance error; Effective coefficients; Correctors; Periodic; Almost periodic; Random; 35J15; 35B27; 65N12; 65N15; 65B05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is the follow-up of Gloria (Math Models Methods Appl Sci 21(8):1601–1630, 2011). One common drawback among numerical homogenization methods is the presence of the so-called resonance error, which roughly speaking is a function of the ratio ερ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\varepsilon }{\rho }$$\end{document}, where ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is a typical macroscopic lengthscale and ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is the typical size of the heterogeneities. In the present work, we make a systematic use of regularization and extrapolation to reduce this resonance error at the level of the approximation of homogenized coefficients and correctors for general non-necessarily symmetric stationary ergodic coefficients. We quantify this reduction for the class of periodic coefficients, for the Kozlov subclass of almost-periodic coefficients, and for the subclass of random coefficients that satisfy a spectral gap estimate (e.g., Poisson random inclusions). We also report on a systematic numerical study in dimension 2, which demonstrates the efficiency of the method and the sharpness of the analysis. Last, we combine this approach to numerical homogenization methods, prove the asymptotic consistency in the case of locally stationary ergodic coefficients, and give quantitative estimates in the case of periodic coefficients.
引用
收藏
页码:217 / 296
页数:79
相关论文
共 50 条
  • [1] Reduction in the Resonance Error in Numerical Homogenization II: Correctors and Extrapolation
    Gloria, Antoine
    Habibi, Zakaria
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (01) : 217 - 296
  • [2] ON THE NATURE OF THE BOUNDARY RESONANCE ERROR IN NUMERICAL HOMOGENIZATION AND ITS REDUCTION
    Carney, Sean p.
    Dussinger, Milica
    Engquist, Bjorn
    MULTISCALE MODELING & SIMULATION, 2024, 22 (02): : 811 - 835
  • [3] Numerical homogenization and correctors for nonlinear elliptic equations
    Efendiev, Y
    Pankov, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 65 (01) : 43 - 68
  • [4] Correctors and error estimates in the homogenization of a Mullins-Sekerka problem
    Garroni, A
    Niethammer, B
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (04): : 371 - 393
  • [5] Error estimates taking account of correctors in homogenization of elliptic operators
    Pastukhova, S. E.
    SBORNIK MATHEMATICS, 2024, 215 (07) : 932 - 952
  • [6] AN ELLIPTIC LOCAL PROBLEM WITH EXPONENTIAL DECAY OF THE RESONANCE ERROR FOR NUMERICAL HOMOGENIZATION
    Abdulle, Assyr
    Arjmand, Doghonay
    Paganoni, Edoardo
    MULTISCALE MODELING & SIMULATION, 2023, 21 (02): : 513 - 541
  • [7] A parabolic local problem with exponential decay of the resonance error for numerical homogenization
    Abdulle, Assyr
    Arjmand, Doghonay
    Paganoni, Edoardo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (13): : 2733 - 2772
  • [8] A posteriori error estimation for numerical model reduction in computational homogenization of porous media
    Ekre, Fredrik
    Larsson, Fredrik
    Runesson, Kenneth
    Janicke, Ralf
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (23) : 5350 - 5380
  • [9] Numerical model reduction with error control in computational homogenization of transient heat flow
    Aggestam, Emil
    Larsson, Fredrik
    Runesson, Kenneth
    Ekre, Fredrik
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 326 : 193 - 222
  • [10] Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems
    Abdulle, Assyr
    Arjmand, Doghonay
    Paganoni, Edoardo
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (06) : 545 - 551