Quantum Graphs: Coulomb-Type Potentials and Exactly Solvable Models

被引:0
|
作者
Yuriy Golovaty
机构
[1] Ivan Franko National University of Lviv,Department of Mechanics and Mathematics
来源
Annales Henri Poincaré | 2023年 / 24卷
关键词
Schrödinger operator; Coulomb potential; -Potential; Quantum graph; Vertex coupling condition; Solvable model; Point interaction; Primary 34L40; 81Q35; Secondary 34E10; 81Q10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Schrödinger operators on a non-compact star graph with the Coulomb-type potentials having singularities at the vertex. The convergence of regularized Hamiltonians Hε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\varepsilon $$\end{document} with cutoff Coulomb potentials coupled with (αδ+βδ′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha \delta +\beta \delta ')$$\end{document}-like ones is investigated. The 1D Coulomb potential and the δ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta '$$\end{document}-potential are very sensitive to their regularization method. The conditions of the norm resolvent convergence of Hε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\varepsilon $$\end{document} depending on the regularization are established. The limit Hamiltonians give the Schrödinger operators with the Coulomb-type potentials in a mathematically precise meaning, ensuring the correct choice of vertex conditions. We also describe all self-adjoint realizations of the formal Coulomb Hamiltonians on the star graph.
引用
收藏
页码:2557 / 2585
页数:28
相关论文
共 50 条
  • [31] Unified treatment of exactly solvable quantum potentials with confluent hypergeometric eigenfunctions: Generalized potentials
    Pena, J. J.
    Morales, J.
    Garcia-Martinez, J.
    Garcia-Ravelo, J.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (24) : 3815 - 3821
  • [32] Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics
    Quesne, C.
    SYMMETRIES IN SCIENCE XV, 2012, 380
  • [33] A TRANSFORMATION METHOD TO CONSTRUCT FAMILY OF EXACTLY SOLVABLE POTENTIALS IN QUANTUM MECHANICS
    Bhagawati, Nabaratna
    Saikia, N.
    Singh, N. Nimai
    ACTA PHYSICA POLONICA B, 2013, 44 (08): : 1711 - 1723
  • [34] NEW CLASS OF CONDITIONALLY EXACTLY SOLVABLE POTENTIALS IN QUANTUM-MECHANICS
    DUTT, R
    KHARE, A
    VARSHNI, YP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (03): : L107 - L113
  • [35] Generation of exactly solvable quantum potentials in D-dimensional space
    Saikia, N.
    Ahmed, S. A. S.
    PHYSICA SCRIPTA, 2010, 81 (03)
  • [36] Exactly solvable modified Morse potentials for quantum-mechanical applications
    Selg, M
    PHYSICA SCRIPTA, 1999, 60 (06): : 491 - 500
  • [37] Saturation of electrostatic potential: Exactly solvable 2D Coulomb models
    Samaj, L
    JOURNAL OF STATISTICAL PHYSICS, 2005, 119 (3-4) : 459 - 478
  • [38] Saturation of Electrostatic Potential: Exactly Solvable 2D Coulomb Models
    L. Šamaj
    Journal of Statistical Physics, 2005, 119 : 459 - 478
  • [39] Tunneling dynamics in exactly solvable models with triple-well potentials
    Berezovoj, V. P.
    Konchatnij, M. I.
    Nurmagambetov, A. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (06)
  • [40] Quasi-exactly solvable relativistic soft-core Coulomb models
    Agboola, Davids
    Zhang, Yao-Zhong
    ANNALS OF PHYSICS, 2012, 327 (09) : 2275 - 2287