A Renormalized Rough Path over Fractional Brownian Motion

被引:0
|
作者
Jérémie Unterberger
机构
[1] Université de Lorraine,
来源
关键词
Hopf Algebra; Feynman Diagram; Fractional Brownian Motion; Double Line; External Line;
D O I
暂无
中图分类号
学科分类号
摘要
We construct in this article a rough path over fractional Brownian motion with arbitrary Hurst index by (i) using the Fourier normal ordering algorithm introduced in (Unterberger, Commun Math Phy 298(1):1–36, 2010) to reduce the problem to that of regularizing tree iterated integrals and (ii) applying the Bogolioubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization algorithm to Feynman diagrams representing tree iterated integrals.
引用
收藏
页码:603 / 636
页数:33
相关论文
共 50 条
  • [41] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [42] Oscillatory Fractional Brownian Motion
    T. Bojdecki
    L. G. Gorostiza
    A. Talarczyk
    Acta Applicandae Mathematicae, 2013, 127 : 193 - 215
  • [43] On the prediction of fractional Brownian motion
    Gripenberg, G
    Norros, I
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 400 - 410
  • [44] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162
  • [45] Trading Fractional Brownian Motion
    Guasoni, Paolo
    Nika, Zsolt
    Rasonyi, Miklos
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03): : 769 - 789
  • [46] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216
  • [47] On simulating fractional Brownian motion
    Szulga, J
    Molz, F
    HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 377 - 387
  • [48] On the prediction of fractional Brownian motion
    Gripenberg, G.
    Norros, I.
    1996, (33)
  • [49] Simulation of fractional brownian motion
    Ruemelin, W.
    Proceedings of the IFIP Conference on Fractals in the Fundamental and Applied Sciences, 1991,
  • [50] Arbitrage with fractional Brownian motion
    Rogers, LCG
    MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105