A hybrid algorithm for solving the absolute value equation

被引:0
|
作者
Olvi L. Mangasarian
机构
[1] University of Wisconsin,Computer Sciences Department
[2] University of California at San Diego,Department of Mathematics
来源
Optimization Letters | 2015年 / 9卷
关键词
Absolute value equation; Concave minimization; Linear programming; Linear equations;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a hybrid algorithm for solving the NP-hard absolute value equation (AVE): Ax-|x|=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax-|x|=b$$\end{document}, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving iteratively a linear system of equations followed by a linear program. The algorithm was tested on 100 consecutively generated random solvable instances of the AVE with n=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=$$\end{document} 50, 100, 200, 500 and 1000. The algorithm solved 100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\,\%$$\end{document} of the test problems to an accuracy of 10-8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-8}$$\end{document} by solving an average of 2.77 systems of linear equations and linear programs per AVE.
引用
收藏
页码:1469 / 1474
页数:5
相关论文
共 50 条
  • [21] A new concave minimization algorithm for the absolute value equation solution
    Zamani, Moslem
    Hladik, Milan
    OPTIMIZATION LETTERS, 2021, 15 (06) : 2241 - 2254
  • [22] A modified multivariate spectral gradient algorithm for solving absolute value equations
    Yu, Zhensheng
    Li, Lin
    Yuan, Yue
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [23] A modified generalized SOR-like method for solving an absolute value equation
    Zhang, Jia-Lin
    Zhang, Guo-Feng
    Liang, Zhao-Zheng
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (09): : 1578 - 1595
  • [24] A new fixed point iterative method for solving tensor absolute value equation
    Lv, Xin-Mei
    Miao, Shu-Xin
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (07):
  • [25] Picard splitting method and Picard CG method for solving the absolute value equation
    Lva, Chang-Qing
    Ma, Chang-Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3643 - 3654
  • [26] A Tensor Splitting AOR Iterative Method for Solving a Tensor Absolute Value Equation
    Chen, Yuhan
    Li, Chenliang
    MATHEMATICS, 2022, 10 (07)
  • [27] An improved harmony search algorithm with differential operator for absolute value equation
    Yong, Longquan
    Liu, Sanyang
    ICIC Express Letters, 2014, 8 (04): : 1151 - 1157
  • [28] Improved Harmony Search Algorithm with Differential Operator for Absolute Value Equation
    Yong Longquan
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 3786 - 3790
  • [29] A modified Barzilai-Borwein algorithm for the generalized absolute value equation
    Yang, Shuang
    Wu, Shi-Liang
    OPERATIONS RESEARCH LETTERS, 2023, 51 (01) : 21 - 25
  • [30] Optimal error correction of the absolute value equation using a genetic algorithm
    Ketabchi, Saeed
    Moosaei, Hossein
    Fallahi, Saeed
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2339 - 2342