Using agent’s type in control problems for a multi-agent hierarchical system

被引:0
|
作者
V. G. Sekaev
机构
[1] Novosibirsk State Technical University,
来源
Automation and Remote Control | 2013年 / 74卷
关键词
Control Problem; Remote Control; Constrain Optimization Problem; Hierarchical System; Goal Function;
D O I
暂无
中图分类号
学科分类号
摘要
The feasibility of using agent’s type in solving a constrained optimization problem for a multi-agent hierarchical system is analyzed. The existence of a threshold for agent’s type, as well as certain conditions of its incorporation into system’s goal function are established.
引用
收藏
页码:321 / 324
页数:3
相关论文
共 50 条
  • [41] MARCS -: Multi-agent railway control system
    Proença, H
    Oliveira, E
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2004, 2004, 3315 : 12 - 21
  • [42] A Review on Cooperative Control Problems of Multi-agent Systems
    Ma, Ying
    Liu, Yungang
    Zhao, Le
    Zhao, Meng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 4831 - 4836
  • [43] A Cooperative Multi-Agent System in Traffic Control
    Han Quanye
    Wang Xiaoming
    Dang Jianwu
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 5, 2008, : 577 - 580
  • [44] Multi-agent neural business control system
    Lourdes Borrajo, M.
    Corchado, Juan M.
    Corchado, Emilio S.
    Pellicer, Maria A.
    Bajo, Javier
    INFORMATION SCIENCES, 2010, 180 (06) : 911 - 927
  • [45] Multi-Agent Technology for Power System Control
    Roche, Robin
    Lauri, Fabrice
    Blunier, Benjamin
    Miraoui, Abdellatif
    Koukam, Abderrafìâa
    Green Energy and Technology, 2013, 59 : 567 - 602
  • [46] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [47] On the hierarchical structure of multi-agent systems
    Tian, H
    Unland, R
    MULTI-AGENT-SYSTEMS IN PRODUCTION, 2000, : 207 - 212
  • [48] Hierarchical Multi-Agent Skill Discovery
    Yang, Mingyu
    Yang, Yaodong
    Lu, Zhenbo
    Zhou, Wengang
    Li, Houqiang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [49] Hierarchical Control Design of Multi-Agent Networks with Approximate Simulation
    Tang Yutao
    Hong Yiguang
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 285 - 290
  • [50] Hierarchical multi-agent reinforcement learning
    Ghavamzadeh, Mohammad
    Mahadevan, Sridhar
    Makar, Rajbala
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2006, 13 (02) : 197 - 229