Stochastic gradient line Bayesian optimization for efficient noise-robust optimization of parameterized quantum circuits

被引:0
|
作者
Shiro Tamiya
Hayata Yamasaki
机构
[1] The University of Tokyo,Department of Applied Physics, Graduate School of Engineering
[2] Institute for Quantum Optics and Quantum Information—IQOQI Vienna,undefined
[3] Austrian Academy of Sciences,undefined
[4] Atominstitut,undefined
[5] Technische Universität Wien,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Optimizing parameterized quantum circuits is a key routine in using near-term quantum devices. However, the existing algorithms for such optimization require an excessive number of quantum-measurement shots for estimating expectation values of observables and repeating many iterations, whose cost has been a critical obstacle for practical use. We develop an efficient alternative optimization algorithm, stochastic gradient line Bayesian optimization (SGLBO), to address this problem. SGLBO reduces the measurement-shot cost by estimating an appropriate direction of updating circuit parameters based on stochastic gradient descent (SGD) and further utilizing Bayesian optimization (BO) to estimate the optimal step size for each iteration in SGD. In addition, we formulate an adaptive measurement-shot strategy and introduce a technique of suffix averaging to reduce the effect of statistical and hardware noise. Our numerical simulation demonstrates that the SGLBO augmented with these techniques can drastically reduce the measurement-shot cost, improve the accuracy, and make the optimization noise-robust.
引用
收藏
相关论文
共 50 条
  • [1] Stochastic gradient line Bayesian optimization for efficient noise-robust optimization of parameterized quantum circuits
    Tamiya, Shiro
    Yamasaki, Hayata
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [2] AdaTerm: Adaptive T-distribution estimated robust moments for Noise-Robust stochastic gradient optimization
    Ilboudo, Wendyam Eric Lionel
    Kobayashi, Taisuke
    Matsubara, Takamitsu
    NEUROCOMPUTING, 2023, 557
  • [3] Structure optimization for parameterized quantum circuits
    Ostaszewski, Mateusz
    Grant, Edward
    Benedetti, Marcello
    QUANTUM, 2021, 5
  • [4] Tensor Train Optimization of Parameterized Quantum Circuits
    G. Paradezhenko
    A. Pervishko
    D. Yudin
    JETP Letters, 2023, 118 : 938 - 945
  • [5] Tight and Efficient Gradient Bounds for Parameterized Quantum Circuits
    Letcher, Alistair
    Woerner, Stefan
    Zoufal, Christa
    QUANTUM, 2024, 8
  • [6] Tensor Train Optimization of Parameterized Quantum Circuits
    Paradezhenko, G.
    Pervishko, A.
    Yudin, D.
    JETP LETTERS, 2023, 118 (12) : 938 - 945
  • [7] Gradient-based Bit Encoding Optimization for Noise-Robust Binary Memristive Crossbar
    Kim, Youngeun
    Kim, Hyunsoo
    Kim, Seijoon
    Kim, Sang Joon
    Panda, Priyadarshini
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 1111 - 1114
  • [8] Space-Efficient and Noise-Robust Quantum Factoring
    Ragavan, Seyoon
    Vaikuntanathan, Vinod
    ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT VI, 2024, 14925 : 107 - 140
  • [9] An Efficient Bayesian Optimization Approach for Automated Optimization of Analog Circuits
    Lyu, Wenlong
    Xue, Pan
    Yang, Fan
    Yan, Changhao
    Hong, Zhiliang
    Zeng, Xuan
    Zhou, Dian
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (06) : 1954 - 1967
  • [10] Noise-robust voice conversion based on joint dictionary optimization
    ZHANG Shilei
    JIAN Zhihua
    SUN Minhong
    ZHONG Hua
    LIU Erxiao
    Chinese Journal of Acoustics, 2020, 39 (02) : 259 - 272