On the variational inequalities related to viscous density-dependent incompressible fluids

被引:0
|
作者
Guillén-González F. [1 ]
Poblete-Cantellano M. [2 ]
Rojas-Medar M.A. [3 ]
机构
[1] Departamento de Ecuaciones y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, 41080 Sevilla
[2] Departamento de Matemáticas, Universidad de Atacama, Copiapó
[3] Grupo de Matemática Aplicada, Dpto. de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Campus Fernando May
关键词
Boussiensq models; Density-dependent Navier-Stokes equations; Generalized and weak solutions; Micropolar models; Unilateral problems; Variational inequalities;
D O I
10.1007/s11565-009-0087-z
中图分类号
学科分类号
摘要
We consider some variational inequality formulations related to density-dependent incompressible fluids. Firstly, we state the density-dependent micropolar model, which let us to introduce a generic (vectorial) differential inequality formulation. Then, two relaxations of this differential inequality will be considered, driving to concepts of weak and generalized solutions (observing that the weak solutions are generalized solutions but the contrary is not clear). Afterwards, under similar conditions imposed to prove the existence of generalized solutions for density-dependent Navier-Stokes equations (see Salvi, Riv Mat Parma 4:453-466, 1982), we prove the existence of weak solutions for this generic problem, which involves several variational inequality problems for viscous density-dependent incompressible fluids. © 2009 Università degli Studi di Ferrara.
引用
收藏
页码:163 / 180
页数:17
相关论文
共 50 条
  • [41] Unique solvability for the density-dependent incompressible Navier-Stokes-Korteweg system
    Wang, Teng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 606 - 618
  • [42] Global Well-posedness for the Density-Dependent Incompressible Flow of Liquid Crystals
    Xiaoping Zhai
    Zhi-Min Chen
    Acta Applicandae Mathematicae, 2018, 158 : 139 - 166
  • [43] Regularity Criteria of the Density-Dependent Incompressible Ideal Boussinesq and Liquid Crystals Model
    Fan, Jishan
    Zhang, Zujin
    ACTA APPLICANDAE MATHEMATICAE, 2021, 173 (01)
  • [44] Global Well-posedness for the Density-Dependent Incompressible Flow of Liquid Crystals
    Zhai, Xiaoping
    Chen, Zhi-Min
    ACTA APPLICANDAE MATHEMATICAE, 2018, 158 (01) : 139 - 166
  • [45] A density-dependent solute solubility parameter for correlating solubilities in supercritical fluids
    Guigard, SE
    Stiver, WH
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (09) : 3786 - 3792
  • [46] A thermodynamic definition of pressure for incompressible viscous fluids
    Bechtel, SE
    Rooney, FJ
    Wang, Q
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2004, 42 (19-20) : 1987 - 1994
  • [47] Nonlinear instability for nonhomogeneous incompressible viscous fluids
    JIANG Fei
    JIANG Song
    NI GuoXi
    Science China(Mathematics), 2013, 56 (04) : 665 - 686
  • [48] Discontinuous Solutions in Heated Viscous Incompressible Fluids
    M. D. Martynenko
    S. M. Bosyakov
    Journal of Engineering Physics and Thermophysics, 2001, 74 (1) : 42 - 46
  • [49] Local Poisson SPH For Viscous Incompressible Fluids
    He, Xiaowei
    Liu, Ning
    Li, Sheng
    Wang, Hongan
    Wang, Guoping
    COMPUTER GRAPHICS FORUM, 2012, 31 (06) : 1948 - 1958
  • [50] An entropic interpolation problem for incompressible viscous fluids
    Arnaudon, Marc
    Cruzeiro, Ana Bela
    Leonard, Christian
    Zambrini, Jean-Claude
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 2211 - 2235