A priori error estimates of mixed finite element methods for general semilinear elliptic optimal control problems

被引:1
|
作者
Lu Z. [1 ,2 ]
Chen Y. [3 ]
机构
[1] School of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing
[2] College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan
[3] School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong
基金
中国国家自然科学基金;
关键词
a priori error estimates; mixed finite element methods; optimal control problems; semilinear elliptic equations;
D O I
10.1007/s10598-013-9164-3
中图分类号
学科分类号
摘要
We study a priori error estimates of mixed finite element methods for general convex optimal control problems governed by semilinear elliptic equations. The state and the co-state are discretized by the lowest order Raviart-Thomas mixed finite element spaces, and the control is discretized by piecewise constant elements. We derive a priori error estimates for the coupled state and control approximation. Finally, we present some numerical examples which confirm our theoretical results. © 2013 Springer Science+Business Media New York.
引用
收藏
页码:114 / 135
页数:21
相关论文
共 50 条
  • [11] Optimal A Priori Error Estimates for Elliptic Interface Problems: Weak Galerkin Mixed Finite Element Approximations
    Kumar, Raman
    Deka, Bhupen
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (02)
  • [12] Interpolation coefficients mixed finite element methods for general semilinear Dirichlet boundary elliptic optimal control problems
    Lu, Zuliang
    Cao, Longzhou
    Li, Lin
    APPLICABLE ANALYSIS, 2018, 97 (14) : 2496 - 2509
  • [13] Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems
    Hou, Tianliang
    Liu, Chunmei
    Yang, Yin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) : 714 - 726
  • [14] Error estimates of mixed finite element methods for quadratic optimal control problems
    Xing, Xiaoqing
    Chen, Yanping
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1812 - 1820
  • [15] A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems
    Neitzel, Ira
    Vexler, Boris
    NUMERISCHE MATHEMATIK, 2012, 120 (02) : 345 - 386
  • [16] Error Estimates of Mixed Methods for Optimal Control Problems Governed by General Elliptic Equations
    Hou, Tianliang
    Li, Li
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (06) : 1050 - 1071
  • [17] A PRIORI AND POSTERIORI ERROR ESTIMATES OF LEGENDRE GALERKIN SPECTRAL METHODS FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Lu, Zuliang
    Huang, Fei
    Lin, Li
    Cai, Fei
    Yang, Yin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (04): : 989 - 1006
  • [18] On Finite Element Error Estimates for Optimal Control Problems with Elliptic PDEs
    Troeltzsch, Fredi
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 40 - 53
  • [19] L∞-error estimates for general optimal control problem by mixed finite element methods
    Xing, Xiaoqing
    Chen, Yanping
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2008, 5 (03) : 441 - 456
  • [20] Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems
    Yanping Chen
    Yunqing Huang
    Wenbin Liu
    Ningning Yan
    Journal of Scientific Computing, 2010, 42 : 382 - 403