Low hydrocarbon mixtures ignition delay times investigation behind reflected shock waves

被引:0
|
作者
N. Lamoureux
C.-E. Paillard
V. Vaslier
机构
[1] Laboratoire de Combustion et des Systèmes Réactifs,
[2] CNRS,undefined
[3] 1C,undefined
[4] avenue de la recherche scientifique,undefined
[5] 45071 Orléans Cedex 2,undefined
[6] France ,undefined
[7] Direction de la Recherche,undefined
[8] Gaz de France 361,undefined
[9] avenue du Président Wilson,undefined
[10] 93211 La Plaine st Denis,undefined
[11] France ,undefined
来源
Shock Waves | 2002年 / 11卷
关键词
Key words: Shock tube, Ignition delay time, Kinetic modelling, Low hydrocarbon;
D O I
暂无
中图分类号
学科分类号
摘要
Ignition delays for low alkanes/oxygen mixtures highly diluted with argon were measured behind a reflected shock wave using ultraviolet emission spectrometry in wide ranges of temperature (1200–2700 K), pressure (0.1–1.8 MPa), equivalence ratio (0.5–2) and dilution (89–99%). For each alkane (methane, ethane and propane), a correlation between ignition delay time, temperature, pressure and concentration is proposed and compared with those obtained in previous studies. This correlation enables the estimation of the delay time with an accuracy better than 20% for all measurement ranges. Results are compared with those from a recent study of the detailed kinetic modelling of the alkane oxidation.
引用
收藏
页码:309 / 322
页数:13
相关论文
共 50 条
  • [41] Simulation of the Ignition and Detonation of Methane–Air Mixtures behind a Reflected Shock Wave
    V. Yu. Gidaspov
    D. S. Kononov
    N. S. Severina
    High Temperature, 2020, 58 : 846 - 851
  • [42] IGNITION OF HYDROGEN-OXYGEN MIXTURES IN REFLECTED SHOCK-WAVES
    MOGI, Y
    HASEGAWA, K
    ASABA, T
    ACTA ASTRONAUTICA, 1974, 1 (7-8) : 921 - 933
  • [43] Ignition kinetics of nitrocyclohexane behind reflected shock waves in inert and air environments
    Wang, Quan-De
    Sun, Yanjin
    Zhao, Ziwen
    Zhang, Yang
    Zhao, Fengqi
    Li, Yang
    Liang, Jinhu
    COMBUSTION AND FLAME, 2023, 255
  • [44] Comparative study on ignition characteristics of styrene and ethylbenzene behind reflected shock waves
    Meng, Xin
    Hu, Erjiang
    Tian, Jing
    FUEL, 2022, 310
  • [45] Effects of NO2 addition on hydrogen ignition behind reflected shock waves
    Mathieu, O.
    Levacque, A.
    Petersen, E. L.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 : 633 - 640
  • [46] Autoignition of propane-air mixtures behind reflected shock waves
    Penyazkov, OG
    Ragotner, KA
    Dean, AJ
    Varatharajan, B
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 : 1941 - 1947
  • [47] Visualization study of ignition modes behind bifurcated-reflected shock waves
    Yamashita, Hiroki
    Kasahara, Jiro
    Sugiyama, Yuta
    Matsuo, Akiko
    COMBUSTION AND FLAME, 2012, 159 (09) : 2954 - 2966
  • [48] Experimental and Modeling Study on the Ignition Kinetics of Nitromethane behind Reflected Shock Waves
    Zhang, Yang
    Zhao, Ziwen
    Ma, Ruirong
    Liang, Jinhu
    Yao, Qian
    Wang, Quan-De
    Zhao, Fengqi
    ACS OMEGA, 2023, 8 (42): : 39749 - 39758
  • [49] Shock Tube Measurements and Kinetic Investigation on the Ignition Delay Times of Methane/Dimethyl Ether Mixtures
    Tang, Chenglong
    Wei, Liangjie
    Zhang, Jiaxiang
    Man, Xingjia
    Huang, Zuohua
    ENERGY & FUELS, 2012, 26 (11) : 6720 - 6728
  • [50] Ignition delay time and H2O measurements during methanol oxidation behind reflected shock waves
    Pinzon, L. T.
    Mathieu, O.
    Mulvihill, C. R.
    Schoegl, I
    Petersen, E. L.
    COMBUSTION AND FLAME, 2019, 203 : 143 - 156