On ideal convergence Fibonacci difference sequence spaces

被引:0
|
作者
Vakeel A. Khan
Rami K. A. Rababah
Kamal M. A. S. Alshlool
Sameera A. A. Abdullah
Ayaz Ahmad
机构
[1] Aligarh Muslim University,Department of Mathematics
[2] Amman Arab University,Department of Mathematics
[3] National Institute of Technology,Department of Mathematics
关键词
Fibonacci difference matrix; Fibonacci ; -convergence; Fibonacci ; -Cauchy; Fibonacci ; -bounded; Lipschitz function;
D O I
暂无
中图分类号
学科分类号
摘要
The Fibonacci sequence was firstly used in the theory of sequence spaces by Kara and Başarir (Casp. J. Math. Sci. 1(1):43–47, 2012). Afterward, Kara (J. Inequal. Appl. 2013(1):38, 2013) defined the Fibonacci difference matrix F̂ by using the Fibonacci sequence (fn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(f_{n})$\end{document} for n∈{0,1,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\in{\{0, 1, \ldots\}}$\end{document} and introduced new sequence spaces related to the matrix domain of F̂. In this paper, by using the Fibonacci difference matrix F̂ defined by the Fibonacci sequence and the notion of ideal convergence, we introduce the Fibonacci difference sequence spaces c0I(Fˆ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c^{I}_{0}(\hat {F})$\end{document}, cI(Fˆ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c^{I}(\hat{F})$\end{document}, and ℓ∞I(Fˆ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell^{I}_{\infty}(\hat{F})$\end{document}. Further, we study some inclusion relations concerning these spaces. In addition, we discuss some properties on these spaces such as monotonicity and solidity.
引用
收藏
相关论文
共 50 条
  • [41] On Some New Sequence Spaces in 2-Normed Spaces Using Ideal Convergence and an Orlicz Function
    Savas, E.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [42] On Some New Sequence Spaces in 2-Normed Spaces Using Ideal Convergence and an Orlicz Function
    E Savaş
    Journal of Inequalities and Applications, 2010
  • [43] ON GENERALIZED FIBONACCI DIFFERENCE SPACE DERIVED FROM THE ABSOLUTELY p- SUMMABLE SEQUENCE SPACES
    Kilinc, Gulsen
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (05): : 903 - 925
  • [44] Ideal convergence in partial metric spaces
    Gulle, Esra
    Dundar, Erdinc
    Ulusu, Ugur
    SOFT COMPUTING, 2023, 27 (19) : 13789 - 13795
  • [45] Ideal convergence in partial metric spaces
    Esra Gülle
    Erdinç Dündar
    Uğur Ulusu
    Soft Computing, 2023, 27 : 13789 - 13795
  • [46] IDEAL APPROACH TO CONVERGENCE IN FUNCTIONAL SPACES
    Bardyla, Serhii
    Supina, Jaroslav
    Zdomskyy, Lyubomyr
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 8495 - 8528
  • [47] Lacunary summable sequence spaces of fuzzy numbers defined by ideal convergence and an Orlicz function
    Esi A.
    Hazarika B.
    Afrika Matematika, 2014, 25 (2) : 331 - 343
  • [48] Applications of Lacunary Sequences to develop Fuzzy Sequence Spaces for Ideal Convergence and Orlicz Function
    Raj, Kuldip
    Mohiuddine, S. A.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (05): : 1131 - 1148
  • [49] On ideal convergence in probabilistic normed spaces
    Mursaleen, M.
    Mohiuddine, S. A.
    MATHEMATICA SLOVACA, 2012, 62 (01) : 49 - 62
  • [50] On weak ideal convergence in normed spaces
    Pehlivan, Serpil
    Sencimen, Celaleddin
    Yaman, Zeynep Hande
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2010, 13 (02) : 153 - 162