The Superspace of geometrodynamics

被引:0
|
作者
Domenico Giulini
机构
[1] Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),
来源
关键词
Quantum gravity; Superspace; Three-manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
Wheeler’s Superspace is the arena in which Geometrodynamics takes place. I review some aspects of its geometrical and topological structure that Wheeler urged us to take seriously in the context of canonical quantum gravity.
引用
收藏
页码:785 / 815
页数:30
相关论文
共 50 条
  • [21] Reduced conformal geometrodynamics
    Arbuzov, Andrej B.
    Pavlov, Alexander E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (2-3):
  • [22] ELECTRO-GEOMETRODYNAMICS
    BOOTH, DJ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1975, 14 (01) : 67 - 72
  • [23] Time in quantum geometrodynamics
    Kheyfets, A
    Miller, WA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (26): : 4125 - 4140
  • [24] Geometrodynamics of spacetime "surfing"
    Alias, Anuar
    INTERNATIONAL NUCLEAR SCIENCE TECHNOLOGY AND ENGINEERING CONFERENCE 2019 (INUSTEC2019), 2020, 785
  • [25] KNOT WORMHOLES IN GEOMETRODYNAMICS
    MIELKE, EW
    GENERAL RELATIVITY AND GRAVITATION, 1977, 8 (03) : 175 - 196
  • [26] Time in quantum geometrodynamics
    George, ND
    Gentle, AP
    Kheyfets, A
    Miller, WA
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 267 - 270
  • [27] Towards a statistical geometrodynamics
    Caticha, A
    DECOHERENCE AND ENTROPY IN COMPLEX SYSTEMS, 2004, 633 : 103 - 116
  • [28] GEOMETRODYNAMICS WITH TETRAD FIELDS
    HENNEAUX, M
    GENERAL RELATIVITY AND GRAVITATION, 1978, 9 (11) : 1031 - 1045
  • [29] ON GEOMETRODYNAMICS AND NULL FIELDS
    PERES, A
    ANNALS OF PHYSICS, 1961, 14 (01) : 419 - 439
  • [30] Dirac Quantum Geometrodynamics
    V. V. Lasukov
    E. E. Il’kin
    V. V. Novoselov
    Russian Physics Journal, 2015, 58 : 423 - 430