The L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}$$\end{document}-invariant, the dual L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}$$\end{document}-invariant, and families

被引:0
|
作者
Jonathan Pottharst
机构
关键词
-adic Galois representations; Semistable representations; -invariants; Eigenvarieties; 11F80;
D O I
10.1007/s40316-015-0054-2
中图分类号
学科分类号
摘要
Given a rank two trianguline family of (φ,Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi ,\Gamma )$$\end{document}-modules having a noncrystalline semistable member, we compute the Fontaine–Mazur L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}$$\end{document}-invariant of that member in terms of the logarithmic derivative, with respect to the Sen weight, of the value at p of the trianguline parameter. This generalizes prior work, in the case of Galois representations, due to Greenberg–Stevens and Colmez.
引用
收藏
页码:159 / 165
页数:6
相关论文
共 50 条