Eisenstein Series in Ramanujan's Lost Notebook

被引:0
|
作者
Bruce C. Berndt
Heng Huat Chan
Jaebum Sohn
Seung Hwan Son
机构
[1] University of Illinois,Department of Mathematics
[2] National University of Singapore,Department of Mathematics
[3] University of Illinois,Department of Mathematics
来源
The Ramanujan Journal | 2000年 / 4卷
关键词
Eisenstein series; modular equations; Ramanujan's lost notebook; theta functions; Dedekind eta function; differential equations for Eisenstein series;
D O I
暂无
中图分类号
学科分类号
摘要
In his lost notebook, Ramanujan stated without proofs several beautifulidentities for the three classsical Eisenstein series (in Ramanujan's notation) P(q), Q(q), and R(q). The identities are given in terms of certain quotients of Dedekind eta-functions called Hauptmoduls. These identities were first proved by S. Raghavan and S.S. Rangachari, but their proofs used the theory of modular forms, with which Ramanujan was likely unfamiliar. In this paper we prove all these identities by using classical methods which would have been well known to Ramanujan. In fact, all our proofs use only results from Ramanujan's notebooks.
引用
收藏
页码:81 / 114
页数:33
相关论文
共 50 条
  • [31] Some Continued Fractions in Ramanujan’s Lost Notebook
    Jongsil Lee
    Jaebum Sohn
    Monatshefte für Mathematik, 2005, 146 : 37 - 48
  • [32] Ramanujan's "Lost" Notebook VIII: the entire Rogers-Ramanujan function
    Andrews, GE
    ADVANCES IN MATHEMATICS, 2005, 191 (02) : 393 - 407
  • [33] On a Ramanujan’s Eisenstein series identity of level fifteen
    E N Bhuvan
    K R Vasuki
    Proceedings - Mathematical Sciences, 2019, 129
  • [34] A problem in diophantine approximation found in Ramanujan's lost notebook
    Berndt, Bruce C.
    Kim, Sun
    RAMANUJAN JOURNAL, 2013, 31 (1-2): : 83 - 95
  • [35] A problem in diophantine approximation found in Ramanujan’s lost notebook
    Bruce C. Berndt
    Sun Kim
    The Ramanujan Journal, 2013, 31 : 83 - 95
  • [36] Ramanujan's Eisenstein series of level 7 and 14
    Vasuki, K. R.
    Veeresha, R. G.
    JOURNAL OF NUMBER THEORY, 2016, 159 : 59 - 75
  • [37] On Ramanujan's Eisenstein series of level 5 and 7
    Pushpa, K.
    Vasuki, K. R.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2022, 37 (03) : 257 - 272
  • [38] On a Ramanujan's Eisenstein series identity of level fifteen
    Bhuvan, E. N.
    Vasuki, K. R.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (04):
  • [39] Septic theta function identities in Ramanujan's lost notebook
    Son, SH
    ACTA ARITHMETICA, 2001, 98 (04) : 361 - 374
  • [40] Analysis of a generalized Lebesgue identity in Ramanujan's Lost Notebook
    Alladi, Krishnaswami
    RAMANUJAN JOURNAL, 2012, 29 (1-3): : 339 - 358