Friedel oscillations of one-dimensional correlated fermions from perturbation theory and density functional theory

被引:0
|
作者
Jovan Odavić
Nicole Helbig
Volker Meden
机构
[1] Institut für Theorie der Statistischen Physik,
[2] RWTH Aachen University and JARA – Fundamentals of Future Information Technology,undefined
[3] Peter-Grünberg Institut and Institute for Advanced Simulation,undefined
[4] Forschungszentrum Jülich,undefined
[5] nanomat/QMAT/CESAM and Department of Physics,undefined
[6] Université de Liegè,undefined
来源
关键词
Solid State and Materials;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Electric field response of strongly correlated one-dimensional metals: A Bethe ansatz density functional theory study
    Akande, A.
    Sanvito, S.
    PHYSICAL REVIEW B, 2010, 82 (24)
  • [22] Friedel oscillations in a one-dimensional noninteracting electron gas
    Grosu, I.
    Tugulan, L.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2008, 21 (01) : 65 - 68
  • [23] Friedel Oscillations in a One-Dimensional Noninteracting Electron Gas
    I. Grosu
    L. Tugulan
    Journal of Superconductivity and Novel Magnetism, 2008, 21 : 65 - 68
  • [24] Friedel oscillations in the one-dimensional Kondo lattice model
    Shibata, N
    Ueda, K
    Nishino, T
    Ishii, C
    PHYSICAL REVIEW B, 1996, 54 (19) : 13495 - 13498
  • [25] Comment on "Application of partition density-functional theory to one-dimensional models"
    Elliott, Peter
    Jensen, Daniel
    Wasserman, Adam
    Burke, Kieron
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [26] Electronic structure of one-dimensional boron chains with density functional theory method
    Yang, CL
    Zhang, ZH
    Ren, TQ
    Luo, HZ
    Xue, XY
    CHINESE PHYSICS LETTERS, 2002, 19 (05) : 663 - 665
  • [27] PERTURBATION-THEORY FOR THE ONE-DIMENSIONAL SCHRODINGER SCATTERING PROBLEM
    PUPYSHEV, VV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (11): : 3305 - 3318
  • [28] Number conserving theory for topologically protected degeneracy in one-dimensional fermions
    Sau, Jay D.
    Halperin, B. I.
    Flensberg, K.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2011, 84 (14)
  • [29] One-dimensional fermions with delta-function repulsion in the Brueckner theory
    Buzatu, FD
    PHYSICAL REVIEW B, 1997, 55 (04): : 2114 - 2121
  • [30] Graph-theory treatment of one-dimensional strongly repulsive fermions
    Decamp, Jean
    Gong, Jiangbin
    Loh, Huanqian
    Miniatura, Christian
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):