Homoclinic Solutions for a Class of Second Order Hamiltonian Systems

被引:1
|
作者
Rong Yuan
Ziheng Zhang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems, School of Mathematical Sciences Ministry of Education
[2] Tianjin Polytechnic University,Department of Mathematics
来源
Results in Mathematics | 2012年 / 61卷
关键词
Primary 34C37; Secondary 35A15; 37J45; Homoclinic solutions; critical point; variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the existence of homoclinic solutions for the following second order non-autonomous Hamiltonian system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ddot q}-L(t)q+\nabla W(t,q)=0, \quad\quad\quad\quad\quad\quad\quad (\rm HS)$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L\in C({\mathbb R},{\mathbb R}^{n^2})}$$\end{document} is a symmetric and positive definite matrix for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t\in {\mathbb R}}$$\end{document}, W(t, q) = a(t)U(q) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\in C({\mathbb R},{\mathbb R}^+)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U\in C^1({\mathbb R}^n,{\mathbb R})}$$\end{document}. The novelty of this paper is that, assuming L is bounded from below in the sense that there is a constant M > 0 such that (L(t)q, q) ≥ M |q|2 for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(t,q)\in {\mathbb R}\times {\mathbb R}^n}$$\end{document}, we establish one new compact embedding theorem. Subsequently, supposing that U satisfies the global Ambrosetti–Rabinowitz condition, we obtain a new criterion to guarantee that (HS) has one nontrivial homoclinic solution using the Mountain Pass Theorem, moreover, if U is even, then (HS) has infinitely many distinct homoclinic solutions. Recent results from the literature are generalized and significantly improved.
引用
收藏
页码:195 / 208
页数:13
相关论文
共 50 条