In this paper we consider the existence of homoclinic solutions for the following second order non-autonomous Hamiltonian system
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\ddot q}-L(t)q+\nabla W(t,q)=0, \quad\quad\quad\quad\quad\quad\quad (\rm HS)$$\end{document}where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${L\in C({\mathbb R},{\mathbb R}^{n^2})}$$\end{document} is a symmetric and positive definite matrix for all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${t\in {\mathbb R}}$$\end{document}, W(t, q) = a(t)U(q) with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${a\in C({\mathbb R},{\mathbb R}^+)}$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${U\in C^1({\mathbb R}^n,{\mathbb R})}$$\end{document}. The novelty of this paper is that, assuming L is bounded from below in the sense that there is a constant M > 0 such that (L(t)q, q) ≥ M |q|2 for all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(t,q)\in {\mathbb R}\times {\mathbb R}^n}$$\end{document}, we establish one new compact embedding theorem. Subsequently, supposing that U satisfies the global Ambrosetti–Rabinowitz condition, we obtain a new criterion to guarantee that (HS) has one nontrivial homoclinic solution using the Mountain Pass Theorem, moreover, if U is even, then (HS) has infinitely many distinct homoclinic solutions. Recent results from the literature are generalized and significantly improved.