Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor

被引:0
|
作者
Tingting Tang
Chaoyang Li
Li Luo
Yanfen Zhang
Jie Li
机构
[1] Chengdu University of Information Technology,Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities
[2] Solorein Technology Inc,undefined
来源
Applied Physics B | 2016年 / 122卷
关键词
Incident Angle; Refractive Index Change; Position Sensitive Detector; Glycerol Water; Refractive Index Variation;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate Goos–Hänchen (GH) effect in a prism waveguide coupling structure with semiconductor metamaterial (SMM) of ZnGaO/ZnO multilayer and explore the possibility as a biosensor. The GH effect in three different waveguides and their performances as a refractive index sensor to detect glycerol concentration in water are analyzed. The SMM brings a periodic property of GH shift peaks which is not found in other waveguides. It is also verified that setting coupling layer of the prism waveguide coupling structure as sensing area is an effective method to significantly increase the sensitivity to refractive index variation. A schematic diagram for the biosensor configuration is designed, and the sensitivity distribution for different glycerol water index is given. Calculation results show that in the proposed biosensor the maximum sensitivity reaches 3.2 × 106 μm/RIU and resolution reaches 1.6 × 10−7 (around 1.33306) with high sensitive position sensitive detector.
引用
收藏
相关论文
共 50 条
  • [21] Giant transmission Goos–Hnchen shift in surface plasmon polaritons excitation and its physical origin
    杨阳
    刘菊
    李志远
    Chinese Physics B, 2015, (07) : 236 - 241
  • [22] Optically tunable Goos-Hänchen shift in a metal-clad waveguide structure containing a cold atomic ensemble
    He, Yu-Qian
    Luo, Xuan-Xue
    Shui, Tao
    Yang, Wen-Xing
    APPLIED PHYSICS B-LASERS AND OPTICS, 2025, 131 (04):
  • [23] Goos-Hänchen effect of spin electron beams in a parallel double δ-barrier magnetic nanostructure
    L. Yuan
    L. L. Xiang
    Y. H. Kong
    M. W. Lu
    Z. J. Lan
    A. H. Zeng
    Z. Y. Wang
    The European Physical Journal B, 2012, 85
  • [24] Effect of Andreev processes on the Goos–Hänchen (GH) shift in the Graphene–Superconductor–Graphene (GSG) junctions
    Salim, Shahrukh
    Marathe, Rahul
    Ghosh, Sankalpa
    Physica E: Low-Dimensional Systems and Nanostructures, 2024, 156
  • [25] Goos–Hänchen effect of spin electron beams in the non-collinear double δ-barrier magnetic nanostructure
    Lishuai Guo
    Jianfeng Li
    Xiaolu Zhu
    Sheng Tuo
    The European Physical Journal B, 2022, 95
  • [26] Surface wave-induced enhancement of the Goos-Hänchen effect in one-dimensional photonic crystals
    V. V. Moskalenko
    I. V. Soboleva
    A. A. Fedyanin
    JETP Letters, 2010, 91 : 382 - 386
  • [27] A semiconductor arrayed waveguide grating and its application to a multiwavelength photodetector
    Kohtoku, M
    Yoshikuni, Y
    LEOS 2000 - IEEE ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS. 1 & 2, 2000, : 342 - 343
  • [28] High sensitive label-free optical sensor based on Goos–Hänchen effect by the single chirped laser pulse
    Elnaz Rezaei Benam
    Mostafa Sahrai
    Jafar Poursamad Bonab
    Scientific Reports, 10
  • [29] Spin-wave Goos-Hänchen effect induced by 360-degree domain walls in magnetic heterostructures
    Li, Mei
    Xi, Bin
    Liu, Yongjun
    Lu, Jie
    PHYSICAL REVIEW B, 2024, 110 (14)
  • [30] Tunneling modes and giant Goos–Hänchen effect of a symmetric heterostructure containing negative-zero-positive index metamaterials
    Xinglin Wang
    Ming Shen
    Huisheng Wang
    Applied Physics B, 2015, 120 : 69 - 73