Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor

被引:0
|
作者
Tingting Tang
Chaoyang Li
Li Luo
Yanfen Zhang
Jie Li
机构
[1] Chengdu University of Information Technology,Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities
[2] Solorein Technology Inc,undefined
来源
Applied Physics B | 2016年 / 122卷
关键词
Incident Angle; Refractive Index Change; Position Sensitive Detector; Glycerol Water; Refractive Index Variation;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate Goos–Hänchen (GH) effect in a prism waveguide coupling structure with semiconductor metamaterial (SMM) of ZnGaO/ZnO multilayer and explore the possibility as a biosensor. The GH effect in three different waveguides and their performances as a refractive index sensor to detect glycerol concentration in water are analyzed. The SMM brings a periodic property of GH shift peaks which is not found in other waveguides. It is also verified that setting coupling layer of the prism waveguide coupling structure as sensing area is an effective method to significantly increase the sensitivity to refractive index variation. A schematic diagram for the biosensor configuration is designed, and the sensitivity distribution for different glycerol water index is given. Calculation results show that in the proposed biosensor the maximum sensitivity reaches 3.2 × 106 μm/RIU and resolution reaches 1.6 × 10−7 (around 1.33306) with high sensitive position sensitive detector.
引用
收藏
相关论文
共 50 条
  • [1] Goos-Hanchen effect in semiconductor metamaterial waveguide and its application as a biosensor
    Tang, Tingting
    Li, Chaoyang
    Luo, Li
    Zhang, Yanfen
    Li, Jie
    APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (06):
  • [2] Goos–Hänchen effect on a graphene-based hyperbolic metamaterial slab
    Negar Shaabani
    Amir Madani
    Meisam Shiri
    Reza Abdi-Ghaleh
    Applied Physics A, 2020, 126
  • [3] Thermo-optic Goos–Hänchen effect in silicon-on-insulator waveguide
    Tingting Tang
    Li Luo
    Wenli Liu
    Xiujun He
    Yanfen Zhang
    Applied Physics B, 2015, 120 : 497 - 504
  • [4] Acoustic Goos-Hänchen effect
    Lin Fa
    Ling Xue
    YuXiao Fa
    YongLan Han
    YanDong Zhang
    HongShen Cheng
    PengFei Ding
    GuoHui Li
    ShaoJie Tang
    ChunLing Bai
    BingJie Xi
    XiaoLin Zhang
    MeiShan Zhao
    Science China Physics, Mechanics & Astronomy, 2017, 60
  • [5] Acoustic Goos-H?nchen effect
    Lin Fa
    Ling Xue
    YuXiao Fa
    YongLan Han
    YanDong Zhang
    HongShen Cheng
    PengFei Ding
    GuoHui Li
    ShaoJie Tang
    ChunLing Bai
    BingJie Xi
    XiaoLin Zhang
    MeiShan Zhao
    Science China(Physics,Mechanics & Astronomy), 2017, Mechanics & Astronomy)2017 (10) : 21 - 32
  • [6] Goos-Hänchen shift for coupled vibrational modes in a semiconductor structure
    Villegas, Diosdado
    Lazcano, Zorayda
    Arriaga, Jesus
    Perez-alvarez, R.
    de Leon-Perez, Fernando
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (32)
  • [7] Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene
    刘彬彬
    马普娟
    於文静
    徐亚东
    高雷
    Chinese Physics Letters, 2019, 36 (06) : 39 - 42
  • [8] Goos-Hänchen effect of spin waves at heterochiral interfaces GOOS-HÄNCHEN EFFECT of SPIN WAVES at ... ZHENYU WANG, YUNSHAN CAO, and PENG YAN
    Wang Z.
    Cao Y.
    Yan P.
    Physical Review B, 2019, 100 (06):
  • [9] The effect of spontaneously generated coherence on the Goos-Hänchen shifts behavior
    Mojtaba Rezaei
    Mostafa Sahrai
    The European Physical Journal D, 2014, 68
  • [10] Impact of the Fizeau drag effect on Goos-Hänchen shifts in graphene
    Din, Rafi Ud
    Shah, Muzamil
    Asgari, Reza
    Gao, Xianlong
    PHYSICAL REVIEW B, 2024, 109 (11)