Error bounds for a least squares meshless finite difference method on closed manifolds

被引:0
|
作者
Oleg Davydov
机构
[1] University of Giessen,Department of Mathematics
来源
关键词
RBF-FD; Kernel based methods; PDE on manifolds; Error bounds; Meshless finite difference method; Generalized finite differences; 65N12; 65N15; 65N06;
D O I
暂无
中图分类号
学科分类号
摘要
We present an error bound for a least squares version of the kernel based meshless finite difference method for elliptic differential equations on smooth compact manifolds of arbitrary dimension without boundary. In particular, we obtain sufficient conditions for the convergence of this method. Numerical examples are provided for the equation -ΔMu+u=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta _{\mathcal {M}} u + u = f$$\end{document} on the 2- and 3-spheres, where ΔM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\mathcal {M}} $$\end{document} is the Laplace-Beltrami operator.
引用
收藏
相关论文
共 50 条