Large deviations for the symmetric simple exclusion process in dimensions d≥ 3

被引:0
|
作者
J. Quastel
F. Rezakhanlou
S. R. S. Varadhan
机构
[1] Department of Mathematics,
[2] University of California,undefined
[3] Davis,undefined
[4] CA 95616. Present address: Departments of Mathematics and Statistics,undefined
[5] University of Toronto,undefined
[6] 100 St. George Street,undefined
[7] Toronto,undefined
[8] Ontario,undefined
[9] M5S 3G3,undefined
[10] Canada. Partially supported by NSF grant DMS-9504791,undefined
[11] Department of Mathematics,undefined
[12] University of California,undefined
[13] Berkeley,undefined
[14] CA 94720. Partially supported by NSF grant DMS-9424270,undefined
[15] Courant Institute,undefined
[16] 251 Mercer St.,undefined
[17] New York,undefined
[18] NY 10012. Partially supported by NSF grant DMS-9503419 and ARO grant DAAH04-95-1-0666,undefined
来源
Probability Theory and Related Fields | 1999年 / 113卷
关键词
Mathematics Subject Classification (1991): 60K35 (60F10);
D O I
暂无
中图分类号
学科分类号
摘要
We consider symmetric simple exclusion processes with L=&ρmacr;Nd particles in a periodic d-dimensional lattice of width N. We perform the diffusive hydrodynamic scaling of space and time. The initial condition is arbitrary and is typically far away form equilibrium. It specifies in the scaling limit a density profile on the d-dimensional torus. We are interested in the large deviations of the empirical process, N−d[∑L1δxi(·)] as random variables taking values in the space of measures on D[0.1]. We prove a large deviation principle, with a rate function that is more or less universal, involving explicity besides the initial profile, only such canonical objects as bulk and self diffusion coefficients.
引用
收藏
页码:1 / 84
页数:83
相关论文
共 50 条
  • [21] Random Walk on the Simple Symmetric Exclusion Process
    Marcelo R. Hilário
    Daniel Kious
    Augusto Teixeira
    Communications in Mathematical Physics, 2020, 379 : 61 - 101
  • [22] Symmetric simple exclusion process with free boundaries
    Anna De Masi
    Pablo A. Ferrari
    Errico Presutti
    Probability Theory and Related Fields, 2015, 161 : 155 - 193
  • [23] COALESCING AND BRANCHING SIMPLE SYMMETRIC EXCLUSION PROCESS
    Hartarsky, Ivailo
    Martinelli, Fabio
    Toninelli, Cristina
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (04): : 2841 - 2859
  • [24] Dynamical large deviations for the boundary driven symmetric exclusion process with Robin boundary con-ditions
    Franco, T.
    Goncalves, P.
    Landim, C.
    Neumann, A.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 : 1497 - 1546
  • [25] Exceedingly large deviations of the totally asymmetric exclusion process
    Olla, Stefano
    Tsai, Li-Cheng
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [26] On the Large Deviations Rate Function for Symmetric Simple Random Walk in Dimension d ∈ Z
    Benes, Christian
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 767 - 773
  • [27] Large deviation of the density profile in the steady state of the open symmetric simple exclusion process
    Derrida, B
    Lebowitz, JL
    Speer, ER
    JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) : 599 - 634
  • [28] Large Deviation of the Density Profile in the Steady State of the Open Symmetric Simple Exclusion Process
    B. Derrida
    J. L. Lebowitz
    E. R. Speer
    Journal of Statistical Physics, 2002, 107 : 599 - 634
  • [29] Entanglement distribution in the quantum symmetric simple exclusion process
    Bernard, Denis
    Piroli, Lorenzo
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [30] Particle Model for the Reservoirs in the Simple Symmetric Exclusion Process
    Thu Dang Thien Nguyen
    Journal of Statistical Physics, 2019, 175 : 402 - 417