Growth rate for beta-expansions

被引:0
|
作者
De-Jun Feng
Nikita Sidorov
机构
[1] The Chinese University of Hong Kong,Department of Mathematics
[2] The University of Manchester,School of Mathematics
来源
关键词
Beta-expansion; Bernoulli convolution; Pisot number; Matrix product; Local dimension; 11A63; 28D05; 42A85;
D O I
暂无
中图分类号
学科分类号
摘要
Let β > 1 and let m > β be an integer. Each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x\in I_\beta:=[0,\frac{m-1}{\beta-1}]}$$\end{document} can be represented in the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=\sum_{k=1}^\infty \epsilon_k\beta^{-k},$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon_k\in\{0,1,\ldots,m-1\}}$$\end{document} for all k (a β-expansion of x). It is known that a.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x\in I_\beta}$$\end{document} has a continuum of distinct β-expansions. In this paper we prove that if β is a Pisot number, then for a.e. x this continuum has one and the same growth rate. We also link this rate to the Lebesgue-generic local dimension for the Bernoulli convolution parametrized by β. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta < \frac{1+\sqrt5}2}$$\end{document}, we show that the set of β-expansions grows exponentially for every internal x.
引用
收藏
页码:41 / 60
页数:19
相关论文
共 50 条
  • [11] Finite beta-expansions of natural numbers
    F. Takamizo
    Acta Mathematica Hungarica, 2024, 172 : 223 - 254
  • [12] Finite beta-expansions with negative bases
    Z. Krčmáriková
    W. Steiner
    T. Vávra
    Acta Mathematica Hungarica, 2017, 152 : 485 - 504
  • [13] Finite beta-expansions of natural numbers
    Takamizo, F.
    ACTA MATHEMATICA HUNGARICA, 2024, 172 (01) : 223 - 254
  • [14] FINITE BETA-EXPANSIONS WITH NEGATIVE BASES
    Krcmarikova, Z.
    Steiner, W.
    Vavra, T.
    ACTA MATHEMATICA HUNGARICA, 2017, 152 (02) : 485 - 504
  • [15] Intersections of homogeneous Cantor sets and beta-expansions
    Kong, Derong
    Li, Wenxia
    Dekking, F. Michel
    NONLINEARITY, 2010, 23 (11) : 2815 - 2834
  • [16] On purely periodic beta-expansions of Pisot numbers
    Sano, Y
    NAGOYA MATHEMATICAL JOURNAL, 2002, 166 : 183 - 207
  • [17] Hausdorff dimension of frequency sets in beta-expansions
    Li, Yao-Qiang
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (04) : 2059 - 2076
  • [18] Complexity of infinite words associated with beta-expansions
    Frougny, C
    Masáková, Z
    Pelantová, E
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2004, 38 (02): : 163 - 185
  • [19] Periodic unique beta-expansions: the Sharkovskii ordering
    Allouche, Jean-Paul
    Clarke, Matthew
    Sidorov, Nikita
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 1055 - 1074
  • [20] Hausdorff dimension of frequency sets in beta-expansions
    Yao-Qiang Li
    Mathematische Zeitschrift, 2022, 302 : 2059 - 2076