Criteria for starlike and convex functions of order α

被引:0
|
作者
Neng Xu
Ding-Gong Yang
机构
[1] Changshu Institute of Technology,Department of Mathematics
[2] Suzhou University,Department of Mathematics
关键词
starlike function; convex function; strongly starlike function; subordination; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
Let An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}_{n}$\end{document} (n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\in\mathbb{N}$\end{document}) be the class of certain analytic functions f(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(z)$\end{document} in the open unit disk U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}$\end{document} and Pn(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{P}_{n}(\lambda)$\end{document} be the subclass of An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}_{n}$\end{document} consisting of f(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(z)$\end{document} which satisfy |f″(z)|≦λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|f''(z)| \leqq \lambda$\end{document} (λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda> 0$\end{document}) in U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}$\end{document}. Some properties for the class Pn(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{P}_{n}(\lambda)$\end{document}, which are the improvements of the previous results due to Ponnusamy and Singh (Complex Var. Theory Appl. 34:276-291, 1997), are discussed.
引用
收藏
相关论文
共 50 条
  • [31] Fekete-Szego problem for starlike and convex functions of complex order
    Kanas, S.
    Darwish, H. E.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (07) : 777 - 782
  • [32] On Distortion Theorems for the n-th Order Derivative of Starlike and Convex Functions of Order α
    凌怡
    盖云英
    包革军
    Journal of Harbin Institute of Technology, 1996, (04) : 5 - 8
  • [33] The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α
    Cudna, K.
    Kwon, O. S.
    Lecko, A.
    Sim, Y. J.
    Smiarowska, B.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 361 - 375
  • [34] ON CONVEX AND STARLIKE UNIVALENT-FUNCTIONS
    PANDEY, RK
    BHARGAVA, GP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 28 (03) : 393 - 400
  • [35] Sufficient conditions for starlike and convex functions
    Ponnusamy, S.
    Vasundhra, P.
    ANNALES POLONICI MATHEMATICI, 2007, 90 (03) : 277 - 288
  • [36] Convex Icebergs and Sectorial Starlike Functions
    Barnard, Roger W.
    Lochman, Matthew H.
    Solynin, Alexander Yu.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2013, 13 (04) : 635 - 682
  • [37] Subclasses of Multivalent Starlike and Convex Functions
    Ali, Rosihan M.
    Ravichandran, V.
    Lee, See Keong
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (03) : 385 - 394
  • [38] STUDY OF SUBCLASSES OF STARLIKE AND CONVEX FUNCTIONS
    Faisal, M. I.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (03): : 792 - 798
  • [39] Second Hankel Determinant of Logarithmic Coefficients of Convex and Starlike Functions of Order Alpha
    Kowalczyk, Bogumila
    Lecko, Adam
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (02) : 727 - 740
  • [40] Convex subclass of harmonic starlike functions
    Özturk, M
    Yalçin, S
    Yamankaradeniz, M
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (02) : 449 - 459