Weak Amenability of Locally Compact Quantum Groups and Approximation Properties of Extended Quantum SU(1, 1)

被引:0
|
作者
Martijn Caspers
机构
[1] Université de Franche-Comté,Laboratoire de Mathématiques
来源
关键词
Quantum Group; Approximate Identity; Norm Core; Compact Quantum Group; Basic Hypergeometric Series;
D O I
暂无
中图分类号
学科分类号
摘要
We study weak amenability for locally compact quantum groups in the sense of Kustermans and Vaes. In particular, we focus on non-discrete examples. We prove that a coamenable quantum group is weakly amenable if there exists a net of positive, scaling invariant elements in the Fourier algebra A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A(\mathbb{G})}$$\end{document} whose representing multipliers form an approximate identity in C0(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_0(\mathbb{G})}$$\end{document} that is bounded in the M0A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M0A(\mathbb{G})}$$\end{document} norm; the bound being an upper estimate for the associated Cowling–Haagerup constant.
引用
收藏
页码:1041 / 1069
页数:28
相关论文
共 50 条
  • [41] Averaging multipliers on locally compact quantum groups
    Daws, Matthew
    Krajczok, Jacek
    Voigt, Christian
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [42] The Haagerup property for locally compact quantum groups
    Daws, Matthew
    Fima, Pierre
    Skalski, Adam
    White, Stuart
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 711 : 189 - 229
  • [43] Property T for locally compact quantum groups
    Chen, Xiao
    Ng, Chi-Keung
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (03)
  • [44] On the similarity problem for locally compact quantum groups
    Brannan, Michael
    Youn, Sang-Gyun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (04) : 1313 - 1337
  • [45] Intermediate subfactors and locally compact quantum groups
    Enock, M
    JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 305 - 330
  • [46] Induction for locally compact quantum groups revisited
    Kalantar, Mehrdad
    Kasprzak, Pawel
    Skalski, Adam
    Soltan, Piotr M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 1071 - 1093
  • [47] Uncertainty principles for locally compact quantum groups
    Jiang, Chunlan
    Liu, Zhengwei
    Wu, Jinsong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (08) : 2399 - 2445
  • [48] A simple definition for locally compact quantum groups
    Kustermans, J
    Vaes, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (10): : 871 - 876
  • [49] Locally compact quantum groups in the universal setting
    Kustermans, J
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (03) : 289 - 338
  • [50] FOURIER TRANSFORM ON LOCALLY COMPACT QUANTUM GROUPS
    Kahng, Byung-Jay
    JOURNAL OF OPERATOR THEORY, 2010, 64 (01) : 69 - 87