The Riemann boundary value problem related to the time-harmonic Maxwell equations

被引:0
|
作者
Pei Yang
Liping Wang
Zuoliang Xu
机构
[1] Renmin University of China,School of Mathematics
[2] Hebei Normal University,School of Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Quaternion analysis; Riemann boundary value problem; Time-harmonic Maxwell equations; Teodorescu operator; matrix operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first give the definition of Teodorescu operator related to the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} matrix operator and discuss a series of properties of this operator, such as uniform boundedness, Hölder continuity and so on. Then we propose the Riemann boundary value problem related to the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} matrix operator. Finally, using the intimate relationship of the corresponding Cauchy-type integral between the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} matrix operator and the time-harmonic Maxwell equations, we investigate the Riemann boundary value problem related to the time-harmonic Maxwell equations and obtain the integral representation of the solution.
引用
收藏
相关论文
共 50 条
  • [41] An iterative method for time-harmonic integral Maxwell's equations
    Collino, F
    Després, B
    COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 171 - 181
  • [42] The energy method for constructing time-harmonic solutions to the maxwell equations
    Denisenko V.V.
    Siberian Mathematical Journal, 2011, 52 (2) : 207 - 221
  • [43] Domain decomposition approach for heterogeneous time-harmonic Maxwell equations
    Universidad Complutense de Madrid, Madrid, Spain
    Comput Methods Appl Mech Eng, 1-2 (97-112):
  • [44] Interior penalty method for the indefinite time-harmonic Maxwell equations
    Paul Houston
    Ilaria Perugia
    Anna Schneebeli
    Dominik Schötzau
    Numerische Mathematik, 2005, 100 : 485 - 518
  • [45] Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium
    Bartsch, Thomas
    Mederski, Jaroslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) : 4304 - 4333
  • [46] Convergence of an AEFEM for time-harmonic Maxwell equations with variable coefficients
    Xie, Yingying
    Zhong, Liuqiang
    Liu, Chunmei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [47] OPTIMIZED SCHWARZ METHODS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH DAMPING
    El Bouajaji, M.
    Dolean, V.
    Gander, M. J.
    Lanteri, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2048 - A2071
  • [48] Wire approximation for Poisson and time-harmonic Maxwell equations.
    Rogier, Francois
    Roussel, Jean-Francois
    Volpert, Dominique
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (10) : 633 - 636
  • [49] THE ENERGY METHOD FOR CONSTRUCTING TIME-HARMONIC SOLUTIONS TO THE MAXWELL EQUATIONS
    Denisenko, V. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (02) : 207 - 221
  • [50] Two-grid methods for time-harmonic Maxwell equations
    Zhong, Liuqiang
    Shu, Shi
    Wang, Junxian
    Xu, J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (01) : 93 - 111